Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(3)(10^(4))*root(3)(10) is equivalent to

10^((4)/(9))

100^((5)/(3))

10^((5)/(3))

100^((4)/(9))

The expression 1043103 \sqrt[3]{10^{4}} \cdot \sqrt[3]{10} is equivalent to\newline1049 10^{\frac{4}{9}} \newline10053 100^{\frac{5}{3}} \newline1053 10^{\frac{5}{3}} \newline10049 100^{\frac{4}{9}}

Full solution

Q. The expression 1043103 \sqrt[3]{10^{4}} \cdot \sqrt[3]{10} is equivalent to\newline1049 10^{\frac{4}{9}} \newline10053 100^{\frac{5}{3}} \newline1053 10^{\frac{5}{3}} \newline10049 100^{\frac{4}{9}}
  1. Identify Equation and Apply Property: Identify the equation and apply the property of multiplying roots with the same index.\newlineThe cube roots can be combined by multiplying the radicands (the numbers under the root).\newline1043103=104103\sqrt[3]{10^{4}}\cdot\sqrt[3]{10} = \sqrt[3]{10^{4} \cdot 10}
  2. Combine Cube Roots by Multiplying: Simplify the multiplication under the cube root.\newlineMultiply 10410^{4} by 1010.\newline104×10=104+1=10510^{4} \times 10 = 10^{4+1} = 10^{5}
  3. Simplify Multiplication: Write the simplified multiplication under the cube root. 1053\sqrt[3]{10^{5}}
  4. Write Simplified Multiplication: Convert the cube root to an exponent form.\newlineThe cube root of a number is the same as raising that number to the power of 1/31/3.\newline1053=105/3\sqrt[3]{10^{5}} = 10^{5/3}

More problems from Operations with rational exponents