Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The equation of an ellipse is given below.

((x+7)^(2))/(8)+((y-10)^(2))/(13)=1
What are the foci of this ellipse?
Choose 1 answer:
(A) 
(-7+sqrt5,10) and 
(-7-sqrt5,10)
(B) 
(7,-10+sqrt105) and 
(7,-10-sqrt105)
(C) 
(7+sqrt105,-10) and 
(7-sqrt105,-10)
(D) 
(-7,10+sqrt5) and 
(-7,10-sqrt5)

The equation of an ellipse is given below.\newline(x+7)28+(y10)213=1 \frac{(x+7)^{2}}{8}+\frac{(y-10)^{2}}{13}=1 \newlineWhat are the foci of this ellipse?\newlineChoose 11 answer:\newline(A) (7+5,10) (-7+\sqrt{5}, 10) and (75,10) (-7-\sqrt{5}, 10) \newline(B) (7,10+105) (7,-10+\sqrt{105}) and (7,10105) (7,-10-\sqrt{105}) \newline(C) (7+105,10) (7+\sqrt{105},-10) and (7105,10) (7-\sqrt{105},-10) \newline(D) (7,10+5) (-7,10+\sqrt{5}) and (7,105) (-7,10-\sqrt{5})

Full solution

Q. The equation of an ellipse is given below.\newline(x+7)28+(y10)213=1 \frac{(x+7)^{2}}{8}+\frac{(y-10)^{2}}{13}=1 \newlineWhat are the foci of this ellipse?\newlineChoose 11 answer:\newline(A) (7+5,10) (-7+\sqrt{5}, 10) and (75,10) (-7-\sqrt{5}, 10) \newline(B) (7,10+105) (7,-10+\sqrt{105}) and (7,10105) (7,-10-\sqrt{105}) \newline(C) (7+105,10) (7+\sqrt{105},-10) and (7105,10) (7-\sqrt{105},-10) \newline(D) (7,10+5) (-7,10+\sqrt{5}) and (7,105) (-7,10-\sqrt{5})
  1. Identify Standard Form: Identify the standard form of the ellipse equation.\newlineThe standard form of an ellipse equation is (xh)2/a2+(yk)2/b2=1(x-h)^2/a^2 + (y-k)^2/b^2 = 1, where (h,k)(h,k) is the center of the ellipse, aa is the semi-major axis, and bb is the semi-minor axis. If a^2 > b^2, the ellipse is horizontal, and if b^2 > a^2, the ellipse is vertical.
  2. Compare Given Equation: Compare the given equation to the standard form to find hh, kk, a2a^2, and b2b^2.
    Given equation: (x+7)28+(y10)213=1\frac{(x+7)^2}{8} + \frac{(y-10)^2}{13} = 1
    Standard form: (xh)2a2+(yk)2b2=1\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1
    Comparing the two, we find:
    h=7h = -7, k=10k = 10, a2=13a^2 = 13, b2=8b^2 = 8
  3. Determine Major Axis: Determine which axis is the major axis.\newlineSince a^2 > b^2, the major axis is along the y-axis, and the minor axis is along the x-axis.
  4. Calculate Distance to Foci: Calculate the distance from the center to the foci along the major axis.\newlineThe distance cc from the center to each focus is given by c=a2b2c = \sqrt{a^2 - b^2}.\newlineHere, a2=13a^2 = 13 and b2=8b^2 = 8, so c=138=5c = \sqrt{13 - 8} = \sqrt{5}.
  5. Find Foci Coordinates: Find the coordinates of the foci.\newlineSince the major axis is vertical, the foci are located at (h,k±c)(h, k \pm c).\newlineUsing h=7h = -7, k=10k = 10, and c=5c = \sqrt{5}, we get the foci at:\newline(7,10+5)(-7, 10 + \sqrt{5}) and (7,105)(-7, 10 - \sqrt{5}).

More problems from Compare linear, exponential, and quadratic growth