Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The derivative of a function 
g is given by

g^(')(x)=x^(3)-2x^(2)-3x+4.
On which intervals is the graph of 
g increasing?
Use a graphing calculator.
Choose 1 answer:
(A) 
x <= -1.562 and

1 <= x <= 2.562
(B) 
-1.562 <= x <= 1 and 
x >= 2.562
(C) 
x <= -0.535 and 
x >= 1.869
(D) 
-0.535 <= x <= 1.869
(E) All real numbers

The derivative of a function g g is given by\newlineg(x)=x32x23x+4. g^{\prime}(x)=x^{3}-2 x^{2}-3 x+4 . \newlineOn which intervals is the graph of g g increasing?\newlineUse a graphing calculator.\newlineChoose 11 answer:\newline(A) x1.562 x \leq-1.562 and\newline1x2.562 1 \leq x \leq 2.562 \newline(B) 1.562x1 -1.562 \leq x \leq 1 and x2.562 x \geq 2.562 \newline(C) x0.535 x \leq-0.535 and x1.869 x \geq 1.869 \newline(D) 0.535x1.869 -0.535 \leq x \leq 1.869 \newline(E) All real numbers

Full solution

Q. The derivative of a function g g is given by\newlineg(x)=x32x23x+4. g^{\prime}(x)=x^{3}-2 x^{2}-3 x+4 . \newlineOn which intervals is the graph of g g increasing?\newlineUse a graphing calculator.\newlineChoose 11 answer:\newline(A) x1.562 x \leq-1.562 and\newline1x2.562 1 \leq x \leq 2.562 \newline(B) 1.562x1 -1.562 \leq x \leq 1 and x2.562 x \geq 2.562 \newline(C) x0.535 x \leq-0.535 and x1.869 x \geq 1.869 \newline(D) 0.535x1.869 -0.535 \leq x \leq 1.869 \newline(E) All real numbers
  1. Find Critical Points: Find the critical points of g(x)g'(x) by setting the derivative equal to zero and solving for xx.g(x)=x32x23x+4=0g'(x) = x^3 - 2x^2 - 3x + 4 = 0
  2. Use Graphing Calculator: Use a graphing calculator to find the roots of the equation.\newlineRoots are approximately x=0.535x = -0.535, x=1x = 1, and x=1.869x = 1.869.
  3. Determine Sign of g(x)g'(x): Determine the sign of g(x)g'(x) on the intervals determined by the critical points.\newlineTest points: x=1x = -1, x=0.5x = 0.5, x=1.5x = 1.5, and x=2x = 2.
  4. Plug in Test Points: Plug test points into g(x)g'(x) to check if the derivative is positive (increasing) or negative (decreasing).\newlineFor x=1x = -1: g'(-1) > 0 (increasing)\newlineFor x=0.5x = 0.5: g'(0.5) < 0 (decreasing)\newlineFor x=1.5x = 1.5: g'(1.5) > 0 (increasing)\newlineFor x=2x = 2: g'(2) < 0 (decreasing)
  5. Graph of g is Increasing: Based on the sign of g(x)g'(x), the graph of gg is increasing on the intervals where g'(x) > 0.\newlineIncreasing intervals: (,0.535)(-\infty, -0.535) and (1,1.869)(1, 1.869).

More problems from Ratio and Quadratic equation