Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

T(0,9)T(0,9) and U(2,7)U(2,7) are the endpoints of a line segment. What is the midpoint MM of that line segment?\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)

Full solution

Q. T(0,9)T(0,9) and U(2,7)U(2,7) are the endpoints of a line segment. What is the midpoint MM of that line segment?\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)
  1. Identify Midpoint Formula: Identify the midpoint formula for a line segment.\newlineThe midpoint of a line segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:\newlineMidpoint M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).
  2. Apply Formula to Endpoints: Apply the midpoint formula to the given endpoints T(0,9)T(0,9) and U(2,7)U(2,7). Substitute (0,9)(0, 9) for (x1,y1)(x_1, y_1) and (2,7)(2, 7) for (x2,y2)(x_2, y_2) into the midpoint formula. M=(0+22,9+72)M = \left(\frac{0 + 2}{2}, \frac{9 + 7}{2}\right).
  3. Calculate Midpoint Coordinates: Calculate the coordinates of the midpoint MM.M=(0+22,9+72)M = \left(\frac{0 + 2}{2}, \frac{9 + 7}{2}\right)M=(22,162)M = \left(\frac{2}{2}, \frac{16}{2}\right)M=(1,8)M = (1, 8).

More problems from Midpoint formula: find the midpoint