Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Vector 
vec(u) has an initial point 
(-5,-8) and a terminal point 
(6,2).
Find the components of vector 
vec(u).

vec(u)=(◻,◻)

Vector u \vec{u} has an initial point (5,8) (-5,-8) and a terminal point (6,2) (6,2) .\newlineFind the components of vector u \vec{u} .\newlineu=(,) \vec{u}=(\square, \square)

Full solution

Q. Vector u \vec{u} has an initial point (5,8) (-5,-8) and a terminal point (6,2) (6,2) .\newlineFind the components of vector u \vec{u} .\newlineu=(,) \vec{u}=(\square, \square)
  1. Find Components of Vector: To find the components of vector u\vec{u}, we need to subtract the coordinates of the initial point from the coordinates of the terminal point.\newlineThe formula to find the components of a vector given its initial point (x1,y1)(x_1, y_1) and terminal point (x2,y2)(x_2, y_2) is:\newlineu=(x2x1,y2y1)\vec{u} = (x_2 - x_1, y_2 - y_1)
  2. Apply Formula to Given Points: Now we apply the formula to the given points.\newlineInitial point: (5,8)(-5, -8)\newlineTerminal point: (6,2)(6, 2)\newlineu=(6(5),2(8))\vec{u} = (6 - (-5), 2 - (-8))
  3. Perform Subtraction for Components: Perform the subtraction for each component. u=(6+5,2+8)\vec{u} = (6 + 5, 2 + 8) u=(11,10)\vec{u} = (11, 10)

More problems from Midpoint formula: find the midpoint