Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

sqrtx*sqrt((y^(5))/(x^(3)))
Which of the following is equivalent to the given expression for all positive values of 
x and 
y ?
Choose 1 answer:
(A) 
x^(-2)y^(5)
(B) 
x^(-1)y^((5)/(2))
(C) 
xy^((5)/(2))
(D) 
x^(2)y^(5)

xy5x3 \sqrt{x} \cdot \sqrt{\frac{y^{5}}{x^{3}}} \newlineWhich of the following is equivalent to the given expression for all positive values of x x and y y ?\newlineChoose 11 answer:\newline(A) x2y5 x^{-2} y^{5} \newline(B) x1y52 x^{-1} y^{\frac{5}{2}} \newline(C) xy52 x y^{\frac{5}{2}} \newline(D) x2y5 x^{2} y^{5}

Full solution

Q. xy5x3 \sqrt{x} \cdot \sqrt{\frac{y^{5}}{x^{3}}} \newlineWhich of the following is equivalent to the given expression for all positive values of x x and y y ?\newlineChoose 11 answer:\newline(A) x2y5 x^{-2} y^{5} \newline(B) x1y52 x^{-1} y^{\frac{5}{2}} \newline(C) xy52 x y^{\frac{5}{2}} \newline(D) x2y5 x^{2} y^{5}
  1. Express in Exponents: We start by expressing the given expression in terms of exponents to simplify it. The square root of a number is the same as raising that number to the power of 1/21/2. So, we rewrite x\sqrt{x} as x1/2x^{1/2} and (y5x3)\sqrt{\left(\frac{y^{5}}{x^{3}}\right)} as (y5x3)1/2\left(\frac{y^{5}}{x^{3}}\right)^{1/2}.
  2. Apply Exponent Rule: Next, we apply the exponent rule (a(m/n))(p/q)=a((mp)/(nq))(a^{(m/n)})^{(p/q)} = a^{((m*p)/(n*q))} to the second part of the expression. This means ((y5)/(x3))(1/2)((y^{5})/(x^{3}))^{(1/2)} becomes y((51)/(21))/x((31)/(21))y^{((5*1)/(2*1))}/x^{((3*1)/(2*1))}, which simplifies to y(5/2)/x(3/2)y^{(5/2)}/x^{(3/2)}.
  3. Multiply Expressions: Now, we multiply the two parts together: x12×(y52x32)x^{\frac{1}{2}} \times \left(\frac{y^{\frac{5}{2}}}{x^{\frac{3}{2}}}\right). When multiplying expressions with the same base, we add the exponents, according to the rule am×an=am+na^m \times a^n = a^{m+n}.
  4. Simplify Exponents: Applying the rule of adding exponents, we get x1232y52x^{\frac{1}{2} - \frac{3}{2}} * y^{\frac{5}{2}}. Simplifying the exponents for xx gives us x1y52x^{-1} * y^{\frac{5}{2}}.
  5. Final Simplified Expression: The simplified expression is x1y52x^{-1}y^{\frac{5}{2}}, which matches option (B) x1y(52)x^{-1}y^{\left(\frac{5}{2}\right)}.

More problems from Compare linear and exponential growth