Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

sqrt(y^(3)z)*sqrt(y^(13)z^(8))
Which of the following is equivalent to the given expression for all real values of 
y and 
z ?
Choose 1 answer:
(A) 
y^(4)z^(3)
(B) 
y^(8)z^(4)
(C) 
y^(8)z^(4)sqrtz
(D) 
y^(15)z^(4)sqrty

y3zy13z8 \sqrt{y^{3} z} \cdot \sqrt{y^{13} z^{8}} \newlineWhich of the following is equivalent to the given expression for all real values of y y and z z ?\newlineChoose 11 answer:\newline(A) y4z3 y^{4} z^{3} \newline(B) y8z4 y^{8} z^{4} \newline(C) y8z4z y^{8} z^{4} \sqrt{z} \newline(D) y15z4y y^{15} z^{4} \sqrt{y}

Full solution

Q. y3zy13z8 \sqrt{y^{3} z} \cdot \sqrt{y^{13} z^{8}} \newlineWhich of the following is equivalent to the given expression for all real values of y y and z z ?\newlineChoose 11 answer:\newline(A) y4z3 y^{4} z^{3} \newline(B) y8z4 y^{8} z^{4} \newline(C) y8z4z y^{8} z^{4} \sqrt{z} \newline(D) y15z4y y^{15} z^{4} \sqrt{y}
  1. Property of square roots: We are given the expression y3zy13z8\sqrt{y^{3}z} \cdot \sqrt{y^{13}z^{8}}. To simplify this expression, we will use the property of square roots that ab=ab\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}.
  2. Multiplying the square roots: Now we multiply the two square roots together: y3z×y13z8=(y3z)×(y13z8)\sqrt{y^{3}z} \times \sqrt{y^{13}z^{8}} = \sqrt{(y^{3}z) \times (y^{13}z^{8})}.
  3. Combining terms under the square root: Next, we combine the terms under the square root: (y3z)(y13z8)=y3+13z1+8\sqrt{(y^{3}z) \cdot (y^{13}z^{8})} = \sqrt{y^{3+13} \cdot z^{1+8}}.
  4. Adding exponents of like bases: We add the exponents of like bases: y(3+13)z(1+8)=y16z9\sqrt{y^{(3+13)} \cdot z^{(1+8)}} = \sqrt{y^{16} \cdot z^{9}}.
  5. Simplifying the square root of each term: Now we simplify the square root of each term: y16z9=y16z9\sqrt{y^{16} \cdot z^{9}} = \sqrt{y^{16}} \cdot \sqrt{z^{9}}.
  6. Dividing exponents by 22: Since y16y^{16} and z9z^{9} are perfect squares, we can take the square root of each: y16z9=y162z92\sqrt{y^{16}} \cdot \sqrt{z^{9}} = y^{\frac{16}{2}} \cdot z^{\frac{9}{2}}.
  7. Recognizing z4.5z^{4.5} as z4zz^{4}\sqrt{z}: We simplify the exponents by dividing them by 22: y162z92=y8z4.5y^{\frac{16}{2}} \cdot z^{\frac{9}{2}} = y^{8} \cdot z^{4.5}.
  8. Matching with option (C): We recognize that z4.5z^{4.5} is the same as z4zz^{4}\sqrt{z}: y8z4.5=y8z4zy^{8} \cdot z^{4.5} = y^{8} \cdot z^{4} \cdot \sqrt{z}.
  9. Matching with option (C): We recognize that z4.5z^{4.5} is the same as z4zz^{4}\sqrt{z}: y8z4.5=y8z4zy^{8} \cdot z^{4.5} = y^{8} \cdot z^{4} \cdot \sqrt{z}. We compare our result with the given answer choices and find that it matches with option (C) y8z4zy^{8}z^{4}\sqrt{z}.

More problems from Compare linear and exponential growth