Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline9q22q5=09q^2 - 2q - 5 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineq=q = _____ or q=q = _____

Full solution

Q. Solve using the quadratic formula.\newline9q22q5=09q^2 - 2q - 5 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlineq=q = _____ or q=q = _____
  1. Identify coefficients: Identify the coefficients aa, bb, and cc in the quadratic equation 9q22q5=09q^2 − 2q − 5 = 0.a=9a = 9, b=2b = -2, c=5c = -5
  2. Write quadratic formula: Write down the quadratic formula: q=b±b24ac2aq = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute values: Substitute the values of aa, bb, and cc into the quadratic formula.q=(2)±(2)249(5)29q = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 9 \cdot (-5)}}{2 \cdot 9}
  4. Calculate discriminant: Simplify the equation by calculating the discriminant (the part under the square root). Discriminant = (2)249(5)=4+180=184(-2)^2 - 4\cdot9\cdot(-5) = 4 + 180 = 184
  5. Insert discriminant: Insert the discriminant back into the quadratic formula. q=2±18418q = \frac{2 \pm \sqrt{184}}{18}
  6. Simplify square root: Simplify the square root of the discriminant. 184\sqrt{184} is not a perfect square, so we will leave it as 184\sqrt{184} for now.
  7. Calculate solutions: Calculate the two possible solutions for qq.q=2+18418q = \frac{2 + \sqrt{184}}{18} or q=218418q = \frac{2 - \sqrt{184}}{18}
  8. Round values: If necessary, round the values of qq to the nearest hundredth.\newlineq(2+13.56)/18q \approx (2 + 13.56) / 18 or q(213.56)/18q \approx (2 - 13.56) / 18\newlineq15.56/18q \approx 15.56 / 18 or q11.56/18q \approx -11.56 / 18\newlineq0.86q \approx 0.86 or q0.64q \approx -0.64

More problems from Solve a quadratic equation using the quadratic formula