Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline8v2+8v5=08v^2 + 8v - 5 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____

Full solution

Q. Solve using the quadratic formula.\newline8v2+8v5=08v^2 + 8v - 5 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____
  1. Identify values of aa, bb, cc: Identify the values of aa, bb, and cc in the quadratic equation 8v2+8v5=08v^2 + 8v - 5 = 0. Compare 8v2+8v5=08v^2 + 8v - 5 = 0 with the standard form ax2+bx+c=0ax^2 + bx + c = 0. a=8a = 8 bb00 bb11
  2. Substitute into quadratic formula: Substitute the values of aa, bb, and cc into the quadratic formula v=b±b24ac2av = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substitute a=8a = 8, b=8b = 8, and c=5c = -5 into the quadratic formula. v=(8)±(8)248(5)28v = \frac{-(8) \pm \sqrt{(8)^2 - 4\cdot8\cdot(-5)}}{2\cdot8}
  3. Simplify expression and calculate discriminant: Simplify the expression under the square root and calculate the discriminant b24ac\sqrt{b^2 - 4ac}.(8)248(5)\sqrt{(8)^2 - 4\cdot 8\cdot (-5)} = 64+160\sqrt{64 + 160} = 224\sqrt{224}
  4. Simplify quadratic formula: Simplify the quadratic formula with the calculated discriminant.\newlinev=8±22428v = \frac{-8 \pm \sqrt{224}}{2 \cdot 8}\newlinev=8±22416v = \frac{-8 \pm \sqrt{224}}{16}
  5. Calculate possible solutions: Calculate the two possible solutions for vv.v=8+22416v = \frac{{-8 + \sqrt{224}}}{{16}} or v=822416v = \frac{{-8 - \sqrt{224}}}{{16}}
  6. Simplify square root: Simplify the square root 224\sqrt{224} and express it in simplest radical form if possible.224\sqrt{224} can be simplified to 16×14\sqrt{16\times14} which is 4×144\times\sqrt{14}.So, v=8+4×1416v = \frac{-8 + 4\times\sqrt{14}}{16} or v=84×1416v = \frac{-8 - 4\times\sqrt{14}}{16}
  7. Simplify fractions: Simplify the fractions. v=(12+144)v = (-\frac{1}{2} + \frac{\sqrt{14}}{4}) or v=(12144)v = (-\frac{1}{2} - \frac{\sqrt{14}}{4})
  8. Round values if required: Round the values of vv to the nearest hundredth, if required.v0.5+144v \approx -0.5 + \frac{\sqrt{14}}{4} or v0.5144v \approx -0.5 - \frac{\sqrt{14}}{4}v0.5+1.87v \approx -0.5 + 1.87 or v0.51.87v \approx -0.5 - 1.87v1.37v \approx 1.37 or v2.37v \approx -2.37

More problems from Solve a quadratic equation using the quadratic formula