Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline7v2+2v7=07v^2 + 2v - 7 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____

Full solution

Q. Solve using the quadratic formula.\newline7v2+2v7=07v^2 + 2v - 7 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinev=v = _____ or v=v = _____
  1. Identify coefficients: Identify the coefficients aa, bb, and cc in the quadratic equation 7v2+2v7=07v^2 + 2v - 7 = 0. Comparing 7v2+2v7=07v^2 + 2v - 7 = 0 with the standard form ax2+bx+c=0ax^2 + bx + c = 0, we find: a=7a = 7 b=2b = 2 c=7c = -7
  2. Substitute values into formula: Substitute the values of aa, bb, and cc into the quadratic formula, v=b±b24ac2av = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. The quadratic formula is v=2±2247(7)27v = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 7 \cdot (-7)}}{2 \cdot 7}.
  3. Calculate discriminant: Simplify the expression under the square root, known as the discriminant. Calculate the discriminant: 2247(7)=4+196=2002^2 - 4\cdot7\cdot(-7) = 4 + 196 = 200.
  4. Substitute discriminant into formula: Substitute the discriminant back into the quadratic formula.\newlineNow we have v=2±20014v = \frac{{-2 \pm \sqrt{200}}}{{14}}.
  5. Simplify square root: Simplify the square root of the discriminant. 200\sqrt{200} can be simplified to 10210\sqrt{2} because 200=100×2200 = 100 \times 2 and 100=10\sqrt{100} = 10. So, v=2±10214v = \frac{-2 \pm 10\sqrt{2}}{14}.
  6. Divide by common factor: Simplify the expression by dividing all terms by the common factor if possible.\newlineIn this case, there is no common factor for all terms, so we proceed with v=2±10214v = \frac{-2 \pm 10\sqrt{2}}{14}.
  7. Calculate possible solutions: Calculate the two possible solutions for vv.\newlineFirst solution: v=2+10214v = \frac{-2 + 10\sqrt{2}}{14}\newlineSecond solution: v=210214v = \frac{-2 - 10\sqrt{2}}{14}
  8. Round values if required: Round the values of vv to the nearest hundredth, if required.\newlineFirst solution: v(2+14.14)/1412.14/140.87v \approx (-2 + 14.14) / 14 \approx 12.14 / 14 \approx 0.87\newlineSecond solution: v(214.14)/1416.14/141.15v \approx (-2 - 14.14) / 14 \approx -16.14 / 14 \approx -1.15

More problems from Solve a quadratic equation using the quadratic formula