Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline7t2+2t2=07t^2 + 2t - 2 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinet=t = _____ or t=t = _____

Full solution

Q. Solve using the quadratic formula.\newline7t2+2t2=07t^2 + 2t - 2 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinet=t = _____ or t=t = _____
  1. Identify coefficients: Identify the coefficients aa, bb, and cc in the quadratic equation 7t2+2t2=07t^2 + 2t - 2 = 0.\newlinea=7a = 7, b=2b = 2, c=2c = -2
  2. Write quadratic formula: Write down the quadratic formula: t=b±b24ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute values: Substitute the values of aa, bb, and cc into the quadratic formula.t=(2)±(2)24(7)(2)2(7)t = \frac{{-(2) \pm \sqrt{{(2)^2 - 4(7)(-2)}}}}{{2(7)}}
  4. Calculate discriminant: Calculate the discriminant (b24ac)(b^2 - 4ac). Discriminant = (2)24(7)(2)=4+56=60(2)^2 - 4(7)(-2) = 4 + 56 = 60
  5. Calculate square root: Calculate the square root of the discriminant. 607.746\sqrt{60} \approx 7.746
  6. Substitute back: Substitute the square root of the discriminant back into the quadratic formula.\newlinet=(2)±7.74614t = \frac{{-(2) \pm 7.746}}{{14}}
  7. Calculate solutions: Calculate the two possible solutions for tt.t=2+7.74614t = \frac{{-2 + 7.746}}{{14}} or t=27.74614t = \frac{{-2 - 7.746}}{{14}}t=5.74614t = \frac{{5.746}}{{14}} or t=9.74614t = \frac{{-9.746}}{{14}}
  8. Simplify and round: Simplify the solutions and, if necessary, round to the nearest hundredth. t0.41t \approx 0.41 or t0.70t \approx -0.70

More problems from Solve a quadratic equation using the quadratic formula