Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline5n2+9n+1=05n^2 + 9n + 1 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinen=n = _____ or n=n = _____

Full solution

Q. Solve using the quadratic formula.\newline5n2+9n+1=05n^2 + 9n + 1 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinen=n = _____ or n=n = _____
  1. Identify coefficients: Identify the coefficients aa, bb, and cc in the quadratic equation 5n2+9n+1=05n^2 + 9n + 1 = 0.a=5a = 5, b=9b = 9, c=1c = 1
  2. Write quadratic formula: Write down the quadratic formula: n=b±b24ac2an = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Substitute values: Substitute the values of aa, bb, and cc into the quadratic formula.\newlinen=(9)±(9)24(5)(1)2(5)n = \frac{-\left(9\right) \pm \sqrt{\left(9\right)^2 - 4\left(5\right)\left(1\right)}}{2\left(5\right)}
  4. Calculate discriminant: Calculate the discriminant (b24ac)(b^2 - 4ac).\newlineDiscriminant = (9)24(5)(1)=8120=61(9)^2 - 4(5)(1) = 81 - 20 = 61
  5. Insert into formula: Insert the discriminant into the quadratic formula.\newlinen=9±612(5)n = \frac{-9 \pm \sqrt{61}}{2(5)}\newlinen=9±6110n = \frac{-9 \pm \sqrt{61}}{10}
  6. Calculate solutions: Calculate the two possible solutions for nn.n=9+6110n = \frac{{-9 + \sqrt{61}}}{{10}} or n=96110n = \frac{{-9 - \sqrt{61}}}{{10}}
  7. Round to nearest hundredth: Round the values of nn to the nearest hundredth, if necessary.n(9+7.81)/10n \approx (-9 + 7.81) / 10 or n(97.81)/10n \approx (-9 - 7.81) / 10n1.19/10n \approx -1.19 / 10 or n16.81/10n \approx -16.81 / 10n0.12n \approx -0.12 or n1.68n \approx -1.68

More problems from Solve a quadratic equation using the quadratic formula