Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline3z2+3z6=03z^2 + 3z - 6 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinez=z = _____ or z=z = _____

Full solution

Q. Solve using the quadratic formula.\newline3z2+3z6=03z^2 + 3z - 6 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinez=z = _____ or z=z = _____
  1. Identify values: Identify the values of aa, bb, and cc in the quadratic equation 3z2+3z6=03z^2 + 3z - 6 = 0. By comparing 3z2+3z6=03z^2 + 3z - 6 = 0 with the standard form ax2+bx+c=0ax^2 + bx + c = 0, we find: a=3a = 3 b=3b = 3 c=6c = -6
  2. Substitute into formula: Substitute the values of aa, bb, and cc into the quadratic formula z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substitute a=3a = 3, b=3b = 3, and c=6c = -6 into the formula. z=(3)±(3)243(6)23z = \frac{-(3) \pm \sqrt{(3)^2 - 4\cdot3\cdot(-6)}}{2\cdot3}
  3. Simplify and calculate discriminant: Simplify the expression under the square root and calculate the discriminant.(3)243(6)\sqrt{(3)^2 - 4\cdot 3\cdot (-6)} = 9+72\sqrt{9 + 72} = 81\sqrt{81}
  4. Continue simplifying formula: Continue simplifying the quadratic formula with the calculated discriminant.\newlinez=3±816z = \frac{-3 \pm \sqrt{81}}{6}\newlineSince 81=9\sqrt{81} = 9, we have:\newlinez=3±96z = \frac{-3 \pm 9}{6}
  5. Calculate solutions: Calculate the two possible solutions for zz.
    First solution:
    z=(3+9)/6z = (-3 + 9) / 6
    z=6/6z = 6 / 6
    z=1z = 1
    Second solution:
    z=(39)/6z = (-3 - 9) / 6
    z=12/6z = -12 / 6
    z=2z = -2

More problems from Solve a quadratic equation using the quadratic formula