Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline2y25y2=02y^2 - 5y - 2 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newliney=y = _____ or y=y = _____

Full solution

Q. Solve using the quadratic formula.\newline2y25y2=02y^2 - 5y - 2 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newliney=y = _____ or y=y = _____
  1. Identify values: Identify the values of aa, bb, and cc in the quadratic equation 2y25y2=02y^2 − 5y − 2 = 0. The quadratic equation is in the form ay2+by+c=0ay^2 + by + c = 0. Comparing this with our equation, we get: a=2a = 2 b=5b = -5 c=2c = -2
  2. Substitute formula: Substitute the values of aa, bb, and cc into the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substitute a=2a = 2, b=5b = -5, and c=2c = -2 into the formula. y=(5)±(5)242(2)22y = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} y=5±25+164y = \frac{5 \pm \sqrt{25 + 16}}{4}
  3. Simplify and solve: Simplify the expression under the square root and solve for yy.
    y=5±25+164y = \frac{5 \pm \sqrt{25 + 16}}{4}
    y=5±414y = \frac{5 \pm \sqrt{41}}{4}
    Now we have two possible solutions for yy:
    y=5+414y = \frac{5 + \sqrt{41}}{4} or y=5414y = \frac{5 - \sqrt{41}}{4}
  4. Calculate numerical values: Calculate the numerical values of yy to the nearest hundredth, if necessary.\newlineFirst solution:\newliney=5+414y = \frac{5 + \sqrt{41}}{4}\newliney5+6.404y \approx \frac{5 + 6.40}{4}\newliney11.404y \approx \frac{11.40}{4}\newliney2.85y \approx 2.85\newlineSecond solution:\newliney=5414y = \frac{5 - \sqrt{41}}{4}\newliney56.404y \approx \frac{5 - 6.40}{4}\newliney1.404y \approx \frac{-1.40}{4}\newliney0.35y \approx -0.35

More problems from Solve a quadratic equation using the quadratic formula