Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline2p2+8p4=02p^2 + 8p - 4 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinep=p = _____ or p=p = _____

Full solution

Q. Solve using the quadratic formula.\newline2p2+8p4=02p^2 + 8p - 4 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinep=p = _____ or p=p = _____
  1. Identify values of aa, bb, cc: Identify the values of aa, bb, and cc in the quadratic equation 2p2+8p4=02p^2 + 8p - 4 = 0. Compare 2p2+8p4=02p^2 + 8p - 4 = 0 with the standard form ax2+bx+c=0ax^2 + bx + c = 0. a=2a = 2 bb00 bb11
  2. Substitute values into quadratic formula: Substitute the values of aa, bb, and cc into the quadratic formula p=b±b24ac2ap = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Substitute a=2a = 2, b=8b = 8, and c=4c = -4 into the quadratic formula. p=(8)±(8)242(4)22p = \frac{-(8) \pm \sqrt{(8)^2 - 4\cdot2\cdot(-4)}}{2\cdot2}
  3. Simplify expression and calculate discriminant: Simplify the expression under the square root and calculate the discriminant b24ac\sqrt{b^2 - 4ac}.(8)242(4)\sqrt{(8)^2 - 4\cdot 2\cdot (-4)}=64+32= \sqrt{64 + 32}=96= \sqrt{96}
  4. Simplify quadratic formula: Simplify the quadratic formula with the calculated discriminant.\newlinep=8±9622p = \frac{-8 \pm \sqrt{96}}{2\cdot2}\newlinep=8±964p = \frac{-8 \pm \sqrt{96}}{4}
  5. Calculate two possible solutions: Calculate the two possible solutions for pp.\newlineFirst solution:\newlinep=8+964p = \frac{{-8 + \sqrt{96}}}{{4}}\newlineSecond solution:\newlinep=8964p = \frac{{-8 - \sqrt{96}}}{{4}}
  6. Simplify square root of 9696: Simplify the square root of 9696 to its simplest radical form if possible. 96\sqrt{96} can be simplified because 9696 is divisible by 1616, which is a perfect square. 96=16×6\sqrt{96} = \sqrt{16\times 6} = 16×6\sqrt{16} \times \sqrt{6} = 4×64 \times \sqrt{6}
  7. Substitute simplified square root into solutions: Substitute the simplified square root back into the solutions for pp.\newlineFirst solution:\newlinep=8+464p = \frac{-8 + 4\sqrt{6}}{4}\newlineSecond solution:\newlinep=8464p = \frac{-8 - 4\sqrt{6}}{4}
  8. Simplify solutions by dividing: Simplify both solutions by dividing each term by the common factor of 44.\newlineFirst solution:\newlinep=(2+6)p = (-2 + \sqrt{6})\newlineSecond solution:\newlinep=(26)p = (-2 - \sqrt{6})
  9. Round solutions if necessary: If necessary, round the solutions to the nearest hundredth.\newlineFirst solution:\newlinep2+2.45p \approx -2 + 2.45\newlinep0.45p \approx 0.45\newlineSecond solution:\newlinep22.45p \approx -2 - 2.45\newlinep4.45p \approx -4.45

More problems from Solve a quadratic equation using the quadratic formula