Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using the quadratic formula.\newline2k2k9=02k^2 - k - 9 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinek=k = _____ or k=k = _____

Full solution

Q. Solve using the quadratic formula.\newline2k2k9=02k^2 - k - 9 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinek=k = _____ or k=k = _____
  1. Identify coefficients: Identify the coefficients aa, bb, and cc in the quadratic equation 2k2k9=02k^2 - k - 9 = 0 by comparing it to the standard form ax2+bx+c=0ax^2 + bx + c = 0.a=2a = 2, b=1b = -1, c=9c = -9
  2. Substitute values into formula: Substitute the values of aa, bb, and cc into the quadratic formula, k=b±b24ac2ak = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\newlinek=(1)±(1)242(9)22k = \frac{-(-1) \pm \sqrt{(-1)^2 - 4\cdot2\cdot(-9)}}{2\cdot2}
  3. Simplify expression and constants: Simplify the expression inside the square root and the constants outside the square root. \newlinek=1±1+724k = \frac{1 \pm \sqrt{1 + 72}}{4}\newlinek=1±734k = \frac{1 \pm \sqrt{73}}{4}
  4. Calculate possible solutions: Calculate the two possible solutions for kk using the simplified square root value.k=1+734k = \frac{1 + \sqrt{73}}{4} or k=1734k = \frac{1 - \sqrt{73}}{4}
  5. Round values if necessary: If necessary, round the values of kk to the nearest hundredth.k(1+8.54)/4k \approx (1 + 8.54) / 4 or k(18.54)/4k \approx (1 - 8.54) / 4k9.54/4k \approx 9.54 / 4 or k7.54/4k \approx -7.54 / 4k2.39k \approx 2.39 or k1.89k \approx -1.89

More problems from Solve a quadratic equation using the quadratic formula