Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the exponential equation for 
x.

{:[3^(4x+5)=81^(-(3)/(4))],[x=◻]:}

Solve the exponential equation for x x .\newline34x+5=8134x= \begin{array}{l} 3^{4 x+5}=81^{-\frac{3}{4}} \\ x=\square \end{array}

Full solution

Q. Solve the exponential equation for x x .\newline34x+5=8134x= \begin{array}{l} 3^{4 x+5}=81^{-\frac{3}{4}} \\ x=\square \end{array}
  1. Identify base of expressions: Identify the base of the exponential expressions.\newlineThe base of the left-hand side is 33. The right-hand side can be rewritten with a base of 33 because 8181 is 343^4.
  2. Rewrite right-hand side with base 33: Rewrite the right-hand side of the equation using the base of 33.81=3481 = 3^4, so 81(3)/(4)=(34)(3)/(4)=3381^{-(3)/(4)} = (3^4)^{-(3)/(4)} = 3^{-3}.
  3. Set exponents equal: Set the exponents equal to each other since the bases are the same.\newline34x+5=333^{4x+5} = 3^{-3}\newlineThis implies that 4x+5=34x + 5 = -3.
  4. Solve for x: Solve for x.\newlineSubtract 55 from both sides of the equation:\newline4x+55=354x + 5 - 5 = -3 - 5\newline4x=84x = -8\newlineDivide both sides by 44:\newlinex=84x = \frac{-8}{4}\newlinex=2x = -2

More problems from Compare linear, exponential, and quadratic growth