Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the exponential equation for 
x.

{:[((1)/(25))^(5x+1)=((1)/(125))^(3x+6)],[x=]:}

Solve the exponential equation for x x .\newline(125)5x+1=(1125)3x+6x= \begin{array}{l} \left(\frac{1}{25}\right)^{5 x+1}=\left(\frac{1}{125}\right)^{3 x+6} \\ x=\square \end{array}

Full solution

Q. Solve the exponential equation for x x .\newline(125)5x+1=(1125)3x+6x= \begin{array}{l} \left(\frac{1}{25}\right)^{5 x+1}=\left(\frac{1}{125}\right)^{3 x+6} \\ x=\square \end{array}
  1. Identify Bases: First, let's write down the equation and identify the bases of the exponents.\newline((1/25))5x+1=((1/125))3x+6((1/25))^{5x+1} = ((1/125))^{3x+6}\newlineWe know that 1/251/25 is 525^{-2} and 1/1251/125 is 535^{-3}.
  2. Rewrite Equation: Rewrite the equation using the bases of 55.\newline(52)5x+1=(53)3x+6(5^{-2})^{5x+1} = (5^{-3})^{3x+6}
  3. Apply Power Rule: Apply the power of a power rule, which states that (am)n=amn(a^{m})^{n} = a^{mn}.\newline52(5x+1)=53(3x+6)5^{-2(5x+1)} = 5^{-3(3x+6)}
  4. Simplify Exponents: Simplify the exponents.\newline510x2=59x185^{-10x-2} = 5^{-9x-18}
  5. Set Exponents Equal: Since the bases are the same, we can set the exponents equal to each other.\newline10x2=9x18-10x - 2 = -9x - 18
  6. Isolate Variable: Solve for x by isolating the variable on one side.\newlineAdd 9x9x to both sides:\newline10x+9x2=9x+9x18-10x + 9x - 2 = -9x + 9x - 18\newlinex2=18-x - 2 = -18
  7. Add 22: Add 22 to both sides to isolate the term with x.\newlinex2+2=18+2-x - 2 + 2 = -18 + 2\newlinex=16-x = -16
  8. Multiply by 1-1: Multiply both sides by 1-1 to solve for x.\newlinex=16x = 16

More problems from Compare linear and exponential growth