Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve by completing the square.\newlinez2+8z33=0z^2 + 8z - 33 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinez=z = _____ or z=z = _____

Full solution

Q. Solve by completing the square.\newlinez2+8z33=0z^2 + 8z - 33 = 0\newlineWrite your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.\newlinez=z = _____ or z=z = _____
  1. Rewrite in standard form: z2+8z33=0z^2 + 8z - 33 = 0\newlineRewrite the equation in the form of x2+bx=cx^2 + bx = c.\newlineAdd 3333 to both sides to set the equation up for completing the square.\newlinez2+8z33+33=0+33z^2 + 8z - 33 + 33 = 0 + 33\newlinez2+8z=33z^2 + 8z = 33
  2. Complete the square: z2+8z=33z^2 + 8z = 33\newlineChoose the number to add to both sides to complete the square.\newlineSince (8/2)2=16(8/2)^2 = 16, add 1616 to both sides.\newlinez2+8z+16=33+16z^2 + 8z + 16 = 33 + 16\newlinez2+8z+16=49z^2 + 8z + 16 = 49
  3. Factor left side: z2+8z+16=49z^2 + 8z + 16 = 49\newlineIdentify the equation after factoring the left side.\newlinez2+8z+16=49z^2 + 8z + 16 = 49\newline(z+4)2=49(z + 4)^2 = 49
  4. Take square root: z+4)2=49(z + 4)^2 = 49(\newlineIdentify the equation after taking the square root on both sides.\newlineTake the square root of both sides of the equation.\newline\$\sqrt{(z + 4)^2} = \sqrt{49}\)\(\newline\)\(z + 4 = \pm\sqrt{49}\)\(\newline\)\(z + 4 = \pm7\)
  5. Isolate variable: We found:\(\newline\)\(z + 4 = \pm7\)\(\newline\)Choose the equation after isolating the variable \(z\).\(\newline\)To isolate \(z\), subtract \(4\) from both sides of the equation.\(\newline\)\(z + 4 - 4 = \pm7 - 4\)\(\newline\)\(z = -4 \pm 7\)
  6. Find values of z: We have:\(\newline\)\(z = -4 \pm 7\)\(\newline\)What are the two values of \(z\)?\(\newline\)\(z = -4 + 7\) implies \(z = 3\).\(\newline\)\(z = -4 - 7\) implies \(z = -11\).\(\newline\)Values of \(z\): \(3\), \(-11\)

More problems from Solve a quadratic equation by completing the square