Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. sin ((5pi)/(8))=

Simplify the expression. sin5π8 \sin \frac{5 \pi}{8} =

Full solution

Q. Simplify the expression. sin5π8 \sin \frac{5 \pi}{8} =
  1. Express in terms of known values: Express sin(5π8)\sin\left(\frac{5\pi}{8}\right) in terms of known sine values.\newlineSince 5π8\frac{5\pi}{8} is not a standard angle for which we know the sine value directly, we can express it in terms of angles for which we do know the sine values. We can write 5π8\frac{5\pi}{8} as 4π8+π8\frac{4\pi}{8} + \frac{\pi}{8}, which simplifies to π2+π8\frac{\pi}{2} + \frac{\pi}{8}.
  2. Use sine addition formula: Use the sine addition formula.\newlineThe sine addition formula is sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B). We will use this formula with A=π2A = \frac{\pi}{2} and B=π8B = \frac{\pi}{8}.
  3. Calculate sine and cosine values: Calculate the sine and cosine values for AA and BB. We know that sin(π2)=1\sin(\frac{\pi}{2}) = 1 and cos(π2)=0\cos(\frac{\pi}{2}) = 0. We also need to find the values for sin(π8)\sin(\frac{\pi}{8}) and cos(π8)\cos(\frac{\pi}{8}). Since π8\frac{\pi}{8} is not a standard angle, we can use the half-angle formula to find its sine and cosine values. The half-angle formulas are sin(x2)=(1cos(x))/2\sin(\frac{x}{2}) = \sqrt{(1 - \cos(x))/2} and cos(x2)=(1+cos(x))/2\cos(\frac{x}{2}) = \sqrt{(1 + \cos(x))/2}. We can use these with x=π4x = \frac{\pi}{4}, for which we know BB00 and BB11.
  4. Apply half-angle formulas: Apply the half-angle formulas.\newlineUsing the half-angle formulas, we get sin(π8)=(1cos(π4))/2=(122)/2\sin\left(\frac{\pi}{8}\right) = \sqrt{\left(1 - \cos\left(\frac{\pi}{4}\right)\right)/2} = \sqrt{\left(1 - \frac{\sqrt{2}}{2}\right)/2} and cos(π8)=(1+cos(π4))/2=(1+22)/2\cos\left(\frac{\pi}{8}\right) = \sqrt{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)/2} = \sqrt{\left(1 + \frac{\sqrt{2}}{2}\right)/2}.
  5. Substitute into sine addition formula: Substitute the values into the sine addition formula. Substituting the values into the sine addition formula, we get \sin\left(\frac{\(5\)\pi}{\(8\)}\right) = \sin\left(\frac{\pi}{\(2\)}\right)\cos\left(\frac{\pi}{\(8\)}\right) + \cos\left(\frac{\pi}{\(2\)}\right)\sin\left(\frac{\pi}{\(8\)}\right) = \(1 \times \sqrt{\left(\frac{11 + \sqrt{22}/22}{22}\right)} + 00 \times \sqrt{\left(\frac{11 - \sqrt{22}/22}{22}\right)} = \sqrt{\left(\frac{11 + \sqrt{22}/22}{22}\right)}.
  6. Simplify expression: Simplify the expression.\newlineSimplifying the expression, we get sin(5π8)=2+24=2+22.\sin\left(\frac{5\pi}{8}\right) = \sqrt{\frac{2 + \sqrt{2}}{4}} = \frac{\sqrt{2 + \sqrt{2}}}{2}.

More problems from Operations with rational exponents