Use Double Angle Formula: We need to find the value of sin(2θ) where θ=arccos(73). We can use the double angle formula for sine, which is sin(2θ)=2sin(θ)cos(θ).
Find cos(θ): First, we find the value of cos(θ) which is given directly as cos(θ)=73.
Find sin(θ): To find sin(θ), we use the Pythagorean identity sin2(θ)+cos2(θ)=1. We already know cos(θ)=73, so we can solve for sin(θ). sin2(θ)=1−cos2(θ) sin2(θ)=1−(73)2 sin2(θ)=1−499 sin2(θ)=4949−499 sin2(θ)=4940 sin(θ)0 sin(θ)1 sin(θ)2
Apply Double Angle Formula: Now we can use the double angle formula for sine: sin(2θ)=2sin(θ)cos(θ)sin(2θ)=2×(7210)×(73)sin(2θ)=(7410)×(73)sin(2θ)=491210