Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

sin(2arccos ((3)/(7)))

sin(2arccos(37)) \sin \left(2 \arccos (\frac{3}{7})\right)

Full solution

Q. sin(2arccos(37)) \sin \left(2 \arccos (\frac{3}{7})\right)
  1. Use Double Angle Formula: We need to find the value of sin(2θ)\sin(2\theta) where θ=arccos(37)\theta = \arccos(\frac{3}{7}). We can use the double angle formula for sine, which is sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta).
  2. Find cos(θ):\cos(\theta): First, we find the value of cos(θ)\cos(\theta) which is given directly as cos(θ)=37\cos(\theta) = \frac{3}{7}.
  3. Find sin(θ):\sin(\theta): To find sin(θ)\sin(\theta), we use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1. We already know cos(θ)=37\cos(\theta) = \frac{3}{7}, so we can solve for sin(θ)\sin(\theta).
    sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta)
    sin2(θ)=1(37)2\sin^2(\theta) = 1 - \left(\frac{3}{7}\right)^2
    sin2(θ)=1949\sin^2(\theta) = 1 - \frac{9}{49}
    sin2(θ)=4949949\sin^2(\theta) = \frac{49}{49} - \frac{9}{49}
    sin2(θ)=4049\sin^2(\theta) = \frac{40}{49}
    sin(θ)\sin(\theta)00
    sin(θ)\sin(\theta)11
    sin(θ)\sin(\theta)22
  4. Apply Double Angle Formula: Now we can use the double angle formula for sine: \newlinesin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta)\newlinesin(2θ)=2×(2107)×(37)\sin(2\theta) = 2 \times \left(\frac{2\sqrt{10}}{7}\right) \times \left(\frac{3}{7}\right)\newlinesin(2θ)=(4107)×(37)\sin(2\theta) = \left(\frac{4\sqrt{10}}{7}\right) \times \left(\frac{3}{7}\right)\newlinesin(2θ)=121049\sin(2\theta) = \frac{12\sqrt{10}}{49}

More problems from Evaluate rational exponents