Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression completely if possible.

(21x^(3)-168x^(2))/(7x^(2))
Answer:

Simplify the expression completely if possible.\newline21x3168x27x2 \frac{21 x^{3}-168 x^{2}}{7 x^{2}} \newlineAnswer:

Full solution

Q. Simplify the expression completely if possible.\newline21x3168x27x2 \frac{21 x^{3}-168 x^{2}}{7 x^{2}} \newlineAnswer:
  1. Factor out GCF: Factor out the greatest common factor from the numerator.\newlineThe greatest common factor of 21x321x^3 and 168x2168x^2 is 21x221x^2.\newlineFactor out 21x221x^2 from the numerator.\newline(21x3168x2)=21x2(x8)(21x^3 - 168x^2) = 21x^2(x - 8)
  2. Divide factored numerator: Divide the factored numerator by the denominator.\newlineWe have (21x2(x8))/(7x2)(21x^2(x - 8))/(7x^2).\newlineSince 21x221x^2 is divisible by 7x27x^2, we can simplify the expression by dividing both terms by 7x27x^2.\newline(21x2)/(7x2)=3(21x^2)/(7x^2) = 3\newline(x8)/(1)=x8(x - 8)/(1) = x - 8
  3. Write simplified expression: Write the simplified expression.\newlineAfter dividing, we are left with 3(x8)3(x - 8).\newlineThis simplifies to 3x243x - 24.

More problems from Operations with rational exponents