Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline295\frac{2}{-9 - \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator. \newline295\frac{2}{-9 - \sqrt{5}}
  1. Select conjugate: Select the conjugate of 95-9 - \sqrt{5}. The conjugate of a number of the form aba - \sqrt{b} is a+ba + \sqrt{b}. Therefore, the conjugate of 95-9 - \sqrt{5} is 9+5-9 + \sqrt{5}.
  2. Multiply by conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator.\newline(2×(9+5))/((95)×(9+5))(2 \times (-9 + \sqrt{5})) / ((-9 - \sqrt{5}) \times (-9 + \sqrt{5}))
  3. Simplify numerator: Simplify the numerator.\newlineNow we distribute the 22 in the numerator across the conjugate.\newline2×(9)+2×5=18+252 \times (-9) + 2 \times \sqrt{5} = -18 + 2\sqrt{5}
  4. Simplify denominator: Simplify the denominator using the difference of squares formula.\newlineThe denominator is in the form of (ab)(a+b)(a - b)(a + b), which simplifies to a2b2a^2 - b^2.\newline(9)2(5)2=815=76(-9)^2 - (\sqrt{5})^2 = 81 - 5 = 76
  5. Write simplified expression: Write the simplified expression.\newlineNow we have the numerator and the denominator simplified, so we write the expression as:\newline(18+25)/76(-18 + 2\sqrt{5}) / 76
  6. Simplify fraction: Simplify the fraction by dividing both terms in the numerator by the denominator.\newline1876+2576-\frac{18}{76} + \frac{2\sqrt{5}}{76}\newlineThis simplifies to:\newline938+538-\frac{9}{38} + \frac{\sqrt{5}}{38}

More problems from Simplify radical expressions using conjugates