What is the area of the region between the graphs of f(x)=−x2+2x+12 and g(x)=x2−12 from x=−3 to x=4 ?Choose 1 answer:(A) 7(B) 3343(C) 383(D) 35213−1−323
Q. What is the area of the region between the graphs of f(x)=−x2+2x+12 and g(x)=x2−12 from x=−3 to x=4 ?Choose 1 answer:(A) 7(B) 3343(C) 383(D) 35213−1−323
Set up integral: To find the area between the two curves, we need to integrate the difference of the functions over the given interval from x=−3 to x=4.
Substitute functions: First, we need to set up the integral. The area A is given by the integral from −3 to 4 of the difference between the functions f(x) and g(x).A=∫−34(f(x)−g(x))dx
Simplify integrand: Substitute the given functions into the integral. A=∫−34((−x2+2x+12)−(x2−12))dx
Integrate with respect: Simplify the integrand by combining like terms.A=∫−34(−x2+2x+12−x2+12)dxA=∫−34(−2x2+2x+24)dx
Evaluate upper limit: Integrate the function with respect to x.A=∫−34(3−2x3+x2+24x)dx
Evaluate lower limit: Evaluate the antiderivative at the upper limit of integration x=4.A(4)=(−32)(4)3+(4)2+24(4)A(4)=(−32)(64)+16+96A(4)=(−3128)+16+96A(4)=(−3128)+16(33)+96(33)A(4)=(−128+48+288)/3A(4)=3208
Find difference: Evaluate the antiderivative at the lower limit of integration x=−3. A(−3)=(−32)(−3)3+(−3)2+24(−3) A(−3)=(−32)(−27)+9−72 A(−3)=(354)+9−72 A(−3)=(54+27−216)/3 A(−3)=(−135)/3 A(−3)=−45
Find difference: Evaluate the antiderivative at the lower limit of integration x=−3.A(−3)=(−32)(−3)3+(−3)2+24(−3)A(−3)=(−32)(−27)+9−72A(−3)=(354)+9−72A(−3)=(54+27−216)/3A(−3)=(−135)/3A(−3)=−45Find the difference between the antiderivative evaluated at the upper and lower limits.Area=A(4)−A(−3)Area=(3208)−(−45)Area=(3208)+(45)(33)A(−3)=(−32)(−3)3+(−3)2+24(−3)0A(−3)=(−32)(−3)3+(−3)2+24(−3)1