Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=-x^(2)+2x+12 and 
g(x)=x^(2)-12 from 
x=-3 to 
x=4 ?
Choose 1 answer:
(A) 7
(B) 
(343)/(3)
(C) 
(83)/(3)
(D) 
(52)/(3)sqrt13-1-32sqrt3

What is the area of the region between the graphs of f(x)=x2+2x+12 f(x)=-x^{2}+2 x+12 and g(x)=x212 g(x)=x^{2}-12 from x=3 x=-3 to x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 77\newline(B) 3433 \frac{343}{3} \newline(C) 833 \frac{83}{3} \newline(D) 523131323 \frac{52}{3} \sqrt{13}-1-32 \sqrt{3}

Full solution

Q. What is the area of the region between the graphs of f(x)=x2+2x+12 f(x)=-x^{2}+2 x+12 and g(x)=x212 g(x)=x^{2}-12 from x=3 x=-3 to x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 77\newline(B) 3433 \frac{343}{3} \newline(C) 833 \frac{83}{3} \newline(D) 523131323 \frac{52}{3} \sqrt{13}-1-32 \sqrt{3}
  1. Set up integral: To find the area between the two curves, we need to integrate the difference of the functions over the given interval from x=3x = -3 to x=4x = 4.
  2. Substitute functions: First, we need to set up the integral. The area AA is given by the integral from 3-3 to 44 of the difference between the functions f(x)f(x) and g(x)g(x).\newlineA=34(f(x)g(x))dxA = \int_{-3}^{4} (f(x) - g(x)) \, dx
  3. Simplify integrand: Substitute the given functions into the integral. \newlineA=34((x2+2x+12)(x212))dxA = \int_{-3}^{4} ((-x^2 + 2x + 12) - (x^2 - 12)) \, dx
  4. Integrate with respect: Simplify the integrand by combining like terms.\newlineA=34(x2+2x+12x2+12)dxA = \int_{-3}^{4} (-x^2 + 2x + 12 - x^2 + 12) \, dx\newlineA=34(2x2+2x+24)dxA = \int_{-3}^{4} (-2x^2 + 2x + 24) \, dx
  5. Evaluate upper limit: Integrate the function with respect to xx.A=34(23x3+x2+24x)dxA = \int_{-3}^{4} \left(\frac{-2}{3}x^3 + x^2 + 24x\right) dx
  6. Evaluate lower limit: Evaluate the antiderivative at the upper limit of integration x=4x = 4.\newlineA(4)=(23)(4)3+(4)2+24(4)A(4) = (-\frac{2}{3})(4)^3 + (4)^2 + 24(4)\newlineA(4)=(23)(64)+16+96A(4) = (-\frac{2}{3})(64) + 16 + 96\newlineA(4)=(1283)+16+96A(4) = (-\frac{128}{3}) + 16 + 96\newlineA(4)=(1283)+16(33)+96(33)A(4) = (-\frac{128}{3}) + 16(\frac{3}{3}) + 96(\frac{3}{3})\newlineA(4)=(128+48+288)/3A(4) = (-128 + 48 + 288) / 3\newlineA(4)=2083A(4) = \frac{208}{3}
  7. Find difference: Evaluate the antiderivative at the lower limit of integration x=3x = -3.
    A(3)=(23)(3)3+(3)2+24(3)A(-3) = (-\frac{2}{3})(-3)^3 + (-3)^2 + 24(-3)
    A(3)=(23)(27)+972A(-3) = (-\frac{2}{3})(-27) + 9 - 72
    A(3)=(543)+972A(-3) = (\frac{54}{3}) + 9 - 72
    A(3)=(54+27216)/3A(-3) = (54 + 27 - 216) / 3
    A(3)=(135)/3A(-3) = (-135) / 3
    A(3)=45A(-3) = -45
  8. Find difference: Evaluate the antiderivative at the lower limit of integration x=3x = -3.\newlineA(3)=(23)(3)3+(3)2+24(3)A(-3) = (-\frac{2}{3})(-3)^3 + (-3)^2 + 24(-3)\newlineA(3)=(23)(27)+972A(-3) = (-\frac{2}{3})(-27) + 9 - 72\newlineA(3)=(543)+972A(-3) = (\frac{54}{3}) + 9 - 72\newlineA(3)=(54+27216)/3A(-3) = (54 + 27 - 216) / 3\newlineA(3)=(135)/3A(-3) = (-135) / 3\newlineA(3)=45A(-3) = -45Find the difference between the antiderivative evaluated at the upper and lower limits.\newlineArea=A(4)A(3)Area = A(4) - A(-3)\newlineArea=(2083)(45)Area = (\frac{208}{3}) - (-45)\newlineArea=(2083)+(45)(33)Area = (\frac{208}{3}) + (45)(\frac{3}{3})\newlineA(3)=(23)(3)3+(3)2+24(3)A(-3) = (-\frac{2}{3})(-3)^3 + (-3)^2 + 24(-3)00\newlineA(3)=(23)(3)3+(3)2+24(3)A(-3) = (-\frac{2}{3})(-3)^3 + (-3)^2 + 24(-3)11

More problems from Roots of rational numbers