Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline64+3\frac{6}{-4 + \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline64+3\frac{6}{-4 + \sqrt{3}}
  1. Find Conjugate: Select the conjugate of 4+3-4 + \sqrt{3}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 4+3-4 + \sqrt{3}: 43-4 - \sqrt{3}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator.\newline64+34343\frac{6}{-4 + \sqrt{3}} \cdot \frac{-4 - \sqrt{3}}{-4 - \sqrt{3}}
  3. Simplify Numerator: Simplify the numerator by distributing the 66.6×(43)6 \times (-4 - \sqrt{3})=6×(4)+6×(3)= 6 \times (-4) + 6 \times (-\sqrt{3})=2463= -24 - 6\sqrt{3}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(4+3)(43)(-4 + \sqrt{3}) * (-4 - \sqrt{3})\newline=(4)2(3)2= (-4)^2 - (\sqrt{3})^2\newline=163= 16 - 3\newline=13= 13
  5. Write Simplified Expression: Write the simplified expression.\newline(2463)/13(-24 - 6\sqrt{3}) / 13\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates