Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=sqrt(e^(x)).
Find 
(dy)/(dx).
Choose 1 answer:
(A) 
(sqrt(e^(x)))/(2)
(B) 
sqrt(e^(x))
(C) 
xsqrt(e^(x-1))
(D) 
(1)/(2sqrt(e^(x)))

Let y=ex y=\sqrt{e^{x}} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) ex2 \frac{\sqrt{e^{x}}}{2} \newline(B) ex \sqrt{e^{x}} \newline(C) xex1 x \sqrt{e^{x-1}} \newline(D) 12ex \frac{1}{2 \sqrt{e^{x}}}

Full solution

Q. Let y=ex y=\sqrt{e^{x}} .\newlineFind dydx \frac{d y}{d x} .\newlineChoose 11 answer:\newline(A) ex2 \frac{\sqrt{e^{x}}}{2} \newline(B) ex \sqrt{e^{x}} \newline(C) xex1 x \sqrt{e^{x-1}} \newline(D) 12ex \frac{1}{2 \sqrt{e^{x}}}
  1. Express Function in Terms of x: First, let's express the function yy in terms of xx using the square root and exponential notation.\newliney=exy = \sqrt{e^x}\newlineThis can also be written as:\newliney=(ex)12y = (e^x)^{\frac{1}{2}}
  2. Find Derivative Using Chain Rule: Now, we need to find the derivative of yy with respect to xx. We will use the chain rule, which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.\newlinedydx=ddx[(ex)12]\frac{dy}{dx} = \frac{d}{dx}\left[(e^x)^{\frac{1}{2}}\right]
  3. Calculate Derivative of Outer Function: The outer function is the square root function, which can be written as a power of 12\frac{1}{2}. The derivative of aba^b with respect to aa is ba(b1)b\cdot a^{(b-1)}, so the derivative of (ex)12(e^x)^{\frac{1}{2}} with respect to exe^x is 12(ex)12\frac{1}{2}\cdot(e^x)^{-\frac{1}{2}}.\newlinedydx=12(ex)12ddx[ex]\frac{dy}{dx} = \frac{1}{2}\cdot(e^x)^{-\frac{1}{2}} \cdot \frac{d}{dx}[e^x]
  4. Multiply Derivatives: The derivative of exe^x with respect to xx is simply exe^x. So we multiply the derivative of the outer function by the derivative of the inner function.\newlinedydx=12(ex)12ex\frac{dy}{dx} = \frac{1}{2}\cdot(e^x)^{-\frac{1}{2}} \cdot e^x
  5. Simplify Expression: Now, we simplify the expression. Since (ex)12(e^x)^{-\frac{1}{2}} is the same as 1ex\frac{1}{\sqrt{e^x}}, we can rewrite the expression as:\newlinedydx=121exex\frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{e^x}} \cdot e^x
  6. Further Simplification: We can simplify further by multiplying exe^x by the fraction. Since exe^x is the same as ex\sqrt{e^x} squared, we get:\newline(dy)/(dx)=(1/2)(ex/ex)(dy)/(dx) = (1/2) \cdot (e^x / \sqrt{e^x})
  7. Divide and Simplify: Simplifying the expression by dividing exe^x by ex\sqrt{e^x} gives us ex\sqrt{e^x}, so we have:\newlinedydx=12ex\frac{dy}{dx} = \frac{1}{2} \cdot \sqrt{e^x}
  8. Verify Correct Answer: Finally, we can see that the correct answer matches option (A): dydx=ex2\frac{dy}{dx} = \frac{\sqrt{e^x}}{2}

More problems from Simplify the product of two radical expressions having same variable