Q. What is the average value of x1 on the interval 4≤x≤8 ?Choose 1 answer:(A) 163(B) 161(C) 4ln(32)(D) 4ln(2)
Define Average Value Formula: To find the average value of a function f(x) on the interval [a,b], we use the formula:Average value = (b−a)1⋅∫abf(x)dxHere, f(x)=x1, a=4, and b=8.
Calculate Integral of 1/x: First, we calculate the integral of 1/x from 4 to 8. The integral of 1/x dx is ln∣x∣, so we evaluate ln∣x∣ from 4 to 8. ∫48x1dx=ln∣8∣−ln∣4∣
Substitute Values into ln∣x∣: Now we substitute the values of x=8 and x=4 into ln∣x∣.ln∣8∣−ln∣4∣=ln(8)−ln(4)
Simplify Logarithmic Expression: We use the properties of logarithms to simplify the expression. ln(8)−ln(4)=ln(48)=ln(2)
Calculate Average Value: Now we calculate the average value using the formula.Average value = (1/(8−4))×ln(2)Average value = (1/4)×ln(2)
Final Result: The average value of (1)/(x) on the interval [4,8] is (ln(2))/(4). This corresponds to answer choice (D).