Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the average value of 
(1)/(x) on the interval 
4 <= x <= 8 ?
Choose 1 answer:
(A) 
(3)/(16)
(B) 
(1)/(16)
(C) 
(ln(32))/(4)
(D) 
(ln(2))/(4)

What is the average value of 1x \frac{1}{x} on the interval 4x8 4 \leq x \leq 8 ?\newlineChoose 11 answer:\newline(A) 316 \frac{3}{16} \newline(B) 116 \frac{1}{16} \newline(C) ln(32)4 \frac{\ln (32)}{4} \newline(D) ln(2)4 \frac{\ln (2)}{4}

Full solution

Q. What is the average value of 1x \frac{1}{x} on the interval 4x8 4 \leq x \leq 8 ?\newlineChoose 11 answer:\newline(A) 316 \frac{3}{16} \newline(B) 116 \frac{1}{16} \newline(C) ln(32)4 \frac{\ln (32)}{4} \newline(D) ln(2)4 \frac{\ln (2)}{4}
  1. Define Average Value Formula: To find the average value of a function f(x)f(x) on the interval [a,b][a, b], we use the formula:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \cdot \int_{a}^{b} f(x) \, dx\newlineHere, f(x)=1xf(x) = \frac{1}{x}, a=4a = 4, and b=8b = 8.
  2. Calculate Integral of 1/x1/x: First, we calculate the integral of 1/x1/x from 44 to 88. The integral of 1/x1/x dx is lnx\ln|x|, so we evaluate lnx\ln|x| from 44 to 88. 481xdx=ln8ln4\int_{4}^{8} \frac{1}{x} dx = \ln|8| - \ln|4|
  3. Substitute Values into lnx\ln|x|: Now we substitute the values of x=8x = 8 and x=4x = 4 into lnx\ln|x|.ln8ln4=ln(8)ln(4)\ln|8| - \ln|4| = \ln(8) - \ln(4)
  4. Simplify Logarithmic Expression: We use the properties of logarithms to simplify the expression. ln(8)ln(4)=ln(84)=ln(2)\ln(8) - \ln(4) = \ln\left(\frac{8}{4}\right) = \ln(2)
  5. Calculate Average Value: Now we calculate the average value using the formula.\newlineAverage value = (1/(84))×ln(2)(1/(8-4)) \times \ln(2)\newlineAverage value = (1/4)×ln(2)(1/4) \times \ln(2)
  6. Final Result: The average value of (1)/(x)(1)/(x) on the interval [4,8][4, 8] is (ln(2))/(4)(\ln(2))/(4). This corresponds to answer choice (D)(D).

More problems from Roots of rational numbers