Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newliney83y73y^{\frac{8}{3}} \cdot y^{\frac{7}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newliney83y73y^{\frac{8}{3}} \cdot y^{\frac{7}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify and Apply Property: Identify the equation and apply the property of exponents for multiplication.\newlineWhen multiplying two exponents with the same base, we add the exponents: \newlineam×an=a(m+n)a^m \times a^n = a^{(m+n)}\newlineSo, y83×y73y^{\frac{8}{3}} \times y^{\frac{7}{3}} becomes y83+73y^{\frac{8}{3} + \frac{7}{3}}.
  2. Add Exponents: Add the exponents.\newline83+73=153\frac{8}{3} + \frac{7}{3} = \frac{15}{3}
  3. Simplify Fraction: Simplify the fraction 153\frac{15}{3}.\newline153=5\frac{15}{3} = 5
  4. Write Final Expression: Write the final expression using the simplified exponent. y(15/3)y^{(15/3)} simplifies to y5y^5.

More problems from Simplify expressions involving rational exponents