Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newliney32y52y^{\frac{3}{2}} \cdot y^{\frac{5}{2}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newliney32y52y^{\frac{3}{2}} \cdot y^{\frac{5}{2}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify and Apply Property: Identify the equation and apply the product of powers property.\newlineThe product of powers property states that when you multiply two exponents with the same base, you add the exponents: am×an=am+na^m \times a^n = a^{m+n}.\newliney32×y52=y32+52y^{\frac{3}{2}} \times y^{\frac{5}{2}} = y^{\frac{3}{2} + \frac{5}{2}}.
  2. Add Exponents: Add the exponents. 32+52=82\frac{3}{2} + \frac{5}{2} = \frac{8}{2}.
  3. Simplify Fraction: Simplify the fraction 82\frac{8}{2}. 82=4\frac{8}{2} = 4.
  4. Write Final Answer: Write the final answer using the simplified exponent. y32×y52=y4y^{\frac{3}{2}} \times y^{\frac{5}{2}} = y^4.

More problems from Simplify expressions involving rational exponents