Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newliney176y76y^{\frac{17}{6}} \cdot y^{\frac{7}{6}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newliney176y76y^{\frac{17}{6}} \cdot y^{\frac{7}{6}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify and Apply Exponent Rule: Identify the equation and apply the exponent rule for multiplication.\newlineWhen multiplying two expressions with the same base, we add the exponents: am×an=am+na^m \times a^n = a^{m+n}.\newliney176×y76=y176+76y^{\frac{17}{6}} \times y^{\frac{7}{6}} = y^{\frac{17}{6} + \frac{7}{6}}.
  2. Add Exponents: Add the exponents. 176+76=(17+7)/6=246.\frac{17}{6} + \frac{7}{6} = \left(17 + 7\right) / 6 = \frac{24}{6}.
  3. Simplify Fraction: Simplify the fraction 24/624/6. 24/6=424/6 = 4.
  4. Write Final Answer: Write the final answer using the simplified exponent. y246=y4y^{\frac{24}{6}} = y^4.

More problems from Simplify expressions involving rational exponents