Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newlines43s13s^{\frac{4}{3}} \cdot s^{\frac{1}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newlines43s13s^{\frac{4}{3}} \cdot s^{\frac{1}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify Equation: Identify the equation and apply the property of exponents for multiplication, which states that when multiplying like bases, you add the exponents: am×an=am+na^m \times a^n = a^{m+n}. So, s43×s13=s43+13s^{\frac{4}{3}} \times s^{\frac{1}{3}} = s^{\frac{4}{3} + \frac{1}{3}}.
  2. Add Exponents: Add the exponents 43\frac{4}{3} and 13\frac{1}{3}. \newline43+13=(4+1)3=53.\frac{4}{3} + \frac{1}{3} = \frac{(4 + 1)}{3} = \frac{5}{3}.
  3. Write Final Expression: Write the final simplified expression using the sum of the exponents. s43×s13=s53s^{\frac{4}{3}} \times s^{\frac{1}{3}} = s^{\frac{5}{3}}.

More problems from Simplify expressions involving rational exponents