Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newlined74d14d^{\frac{7}{4}} \cdot d^{\frac{1}{4}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newlined74d14d^{\frac{7}{4}} \cdot d^{\frac{1}{4}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify Equation and Apply Property: Identify the equation and apply the property of exponents for multiplication.\newlineWhen multiplying two exponents with the same base, we add the exponents: \newlineam×an=a(m+n)a^m \times a^n = a^{(m+n)}\newlined74×d14=d74+14d^{\frac{7}{4}} \times d^{\frac{1}{4}} = d^{\frac{7}{4} + \frac{1}{4}}
  2. Add Exponents: Add the exponents.\newline74+14=84\frac{7}{4} + \frac{1}{4} = \frac{8}{4}\newlined74+14=d84d^{\frac{7}{4} + \frac{1}{4}} = d^{\frac{8}{4}}
  3. Simplify Exponent: Simplify the exponent. \newline84\frac{8}{4} simplifies to 22.\newlined84=d2d^{\frac{8}{4}} = d^2
  4. Write Final Answer: Write the final answer.\newlineThe simplified form of d7/4×d1/4d^{7/4} \times d^{1/4} is d2d^2.

More problems from Simplify expressions involving rational exponents