Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator. 
sin A=(55)/(73) and 
A is in Quadrant I.
Find 
cos 2A.

(2640)/(5329)

(5280)/(5329)

(-721)/(5329)

(-1442)/(5329)

Select the answer which is equivalent to the given expression using your calculator. sinA=5573 \sin A=\frac{55}{73} and A \mathrm{A} is in Quadrant I.\newlineFind cos2A \cos 2 A .\newline26405329 \frac{2640}{5329} \newline52805329 \frac{5280}{5329} \newline7215329 \frac{-721}{5329} \newline14425329 \frac{-1442}{5329}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator. sinA=5573 \sin A=\frac{55}{73} and A \mathrm{A} is in Quadrant I.\newlineFind cos2A \cos 2 A .\newline26405329 \frac{2640}{5329} \newline52805329 \frac{5280}{5329} \newline7215329 \frac{-721}{5329} \newline14425329 \frac{-1442}{5329}
  1. Given information: We are given that sinA=5573\sin A = \frac{55}{73} and AA is in Quadrant I. We need to find cos2A\cos 2A. We can use the double angle formula for cosine, which is cos2A=cos2Asin2A\cos 2A = \cos^2 A - \sin^2 A or cos2A=2cos2A1\cos 2A = 2\cos^2 A - 1. Since we have the value of sinA\sin A, we can find cosA\cos A using the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1.
  2. Find cosA\cos A: First, let's find cosA\cos A. We know that sin2A+cos2A=1\sin^2 A + \cos^2 A = 1. So, cos2A=1sin2A\cos^2 A = 1 - \sin^2 A. We plug in the value of sinA\sin A to find cos2A\cos^2 A.\newlinecos2A=1(5573)2\cos^2 A = 1 - \left(\frac{55}{73}\right)^2
  3. Calculate sin2A\sin^2 A: Calculate (55/73)2(55/73)^2 to find sin2A\sin^2 A.\newline(55/73)2=3025/5329(55/73)^2 = 3025/5329
  4. Subtract sin2A\sin^2 A: Subtract sin2A\sin^2 A from 11 to find cos2A\cos^2 A.\newlinecos2A=130255329\cos^2 A = 1 - \frac{3025}{5329}\newlinecos2A=5329532930255329\cos^2 A = \frac{5329}{5329} - \frac{3025}{5329}\newlinecos2A=23045329\cos^2 A = \frac{2304}{5329}
  5. Use double angle formula: Now we have cos2A\cos^2 A, we can use the double angle formula for cosine. We choose cos2A=2cos2A1\cos 2A = 2\cos^2 A - 1 because it directly uses cos2A\cos^2 A.\newlinecos2A=2(23045329)1\cos 2A = 2(\frac{2304}{5329}) - 1
  6. Calculate 2(2304/5329)2(2304/5329): Calculate 2(2304/5329)2(2304/5329). \newline2(2304/5329)=4608/53292(2304/5329) = 4608/5329
  7. Subtract 11: Subtract 11 from 4608/53294608/5329 to find extcos2A ext{cos} 2A.
    ext{cos} 2A = rac{4608}{5329} - rac{5329}{5329}
    ext{cos} 2A = rac{4608 - 5329}{5329}
    ext{cos} 2A = - rac{721}{5329}

More problems from Operations with rational exponents