Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator. 
tan A=(9)/(40) and A is in Quadrant I.
Find 
sin 2A.

(360)/(1681)

(720)/(1681)

(3038)/(1681)

(1519)/(1681)

Select the answer which is equivalent to the given expression using your calculator. tanA=940 \tan A=\frac{9}{40} and A is in Quadrant I.\newlineFind sin2A \sin 2 A .\newline3601681 \frac{360}{1681} \newline7201681 \frac{720}{1681} \newline30381681 \frac{3038}{1681} \newline15191681 \frac{1519}{1681}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator. tanA=940 \tan A=\frac{9}{40} and A is in Quadrant I.\newlineFind sin2A \sin 2 A .\newline3601681 \frac{360}{1681} \newline7201681 \frac{720}{1681} \newline30381681 \frac{3038}{1681} \newline15191681 \frac{1519}{1681}
  1. Define Tangent Ratio: We know that the tangent of an angle is the ratio of the opposite side to the adjacent side in a right triangle. Given tanA=940\tan A = \frac{9}{40}, we can consider a right triangle where the opposite side (OO) is 99 and the adjacent side (AA) is 4040. We need to find the hypotenuse (HH) using the Pythagorean theorem: O2+A2=H2O^2 + A^2 = H^2.
  2. Calculate Hypotenize: Calculate the hypotenuse (HH) using the Pythagorean theorem: H2=O2+A2H^2 = O^2 + A^2.
    H2=92+402H^2 = 9^2 + 40^2
    H2=81+1600H^2 = 81 + 1600
    H2=1681H^2 = 1681
    H=1681H = \sqrt{1681}
    H=41H = 41
  3. Find Sin and Cos: Now that we have the lengths of all sides of the right triangle, we can find sinA\sin A and cosA\cos A. sinA\sin A is the ratio of the opposite side to the hypotenuse, and cosA\cos A is the ratio of the adjacent side to the hypotenuse.\newlinesinA=OH=941\sin A = \frac{O}{H} = \frac{9}{41}\newlinecosA=AH=4041\cos A = \frac{A}{H} = \frac{40}{41}
  4. Use Double Angle Formula: We need to find sin2A\sin 2A. The double angle formula for sine is sin2A=2×sinA×cosA\sin 2A = 2 \times \sin A \times \cos A. Let's use the values we found for sinA\sin A and cosA\cos A.\newlinesin2A=2×(941)×(4041)\sin 2A = 2 \times \left(\frac{9}{41}\right) \times \left(\frac{40}{41}\right)
  5. Multiply Values: Now, multiply the values to find sin2A\sin 2A.sin2A=2×(941)×(4041)\sin 2A = 2 \times \left(\frac{9}{41}\right) \times \left(\frac{40}{41}\right)sin2A=(2×9×40)/(41×41)\sin 2A = \left(2 \times 9 \times 40\right) / \left(41 \times 41\right)sin2A=(720)/(1681)\sin 2A = \left(720\right) / \left(1681\right)
  6. Final Result: The value of sin2A\sin 2A is 7201681\frac{720}{1681}. This matches one of the answer choices provided.

More problems from Operations with rational exponents