Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator. 
cos A=(63)/(65) and A is in Quadrant I.
Find 
cos 2A.

(1008)/(4225)

(7426)/(4225)

(3713)/(4225)

(2016)/(4225)

Select the answer which is equivalent to the given expression using your calculator. cosA=6365 \cos A=\frac{63}{65} and A is in Quadrant I.\newlineFind cos2A \cos 2 A .\newline10084225 \frac{1008}{4225} \newline74264225 \frac{7426}{4225} \newline37134225 \frac{3713}{4225} \newline20164225 \frac{2016}{4225}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator. cosA=6365 \cos A=\frac{63}{65} and A is in Quadrant I.\newlineFind cos2A \cos 2 A .\newline10084225 \frac{1008}{4225} \newline74264225 \frac{7426}{4225} \newline37134225 \frac{3713}{4225} \newline20164225 \frac{2016}{4225}
  1. Given information: We are given that cosA=6365\cos A = \frac{63}{65} and AA is in Quadrant I. We need to find cos2A\cos 2A. The double angle formula for cosine is cos2A=cos2Asin2A\cos 2A = \cos^2 A - \sin^2 A. Since we know cosA\cos A, we can find sinA\sin A using the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1.
  2. Find sinA\sin A: First, let's find sinA\sin A. We know that sin2A=1cos2A\sin^2 A = 1 - \cos^2 A. So we calculate sin2A=1(6365)2\sin^2 A = 1 - (\frac{63}{65})^2.
  3. Calculate sin A: Calculating sin2A\sin^2 A gives us sin2A=1(39694225)\sin^2 A = 1 - \left(\frac{3969}{4225}\right). We subtract 39693969 from 42254225 to find sin2A\sin^2 A.
  4. Find cos2A\cos 2A: Subtracting gives us sin2A=4225422539694225=422539694225=2564225.\sin^2 A = \frac{4225}{4225} - \frac{3969}{4225} = \frac{4225 - 3969}{4225} = \frac{256}{4225}.
  5. Use double angle formula: Now we take the square root to find sinA\sin A. Since AA is in Quadrant I, sinA\sin A is positive. So sinA=2564225=1665\sin A = \sqrt{\frac{256}{4225}} = \frac{16}{65}.
  6. Substitute values: Now we use the double angle formula for cosine: cos2A=cos2Asin2A\cos 2A = \cos^2 A - \sin^2 A. We substitute cosA=6365\cos A = \frac{63}{65} and sinA=1665\sin A = \frac{16}{65} into the formula.
  7. Calculate squares: Substituting the values gives us cos2A=(6365)2(1665)2\cos 2A = (\frac{63}{65})^2 - (\frac{16}{65})^2. We calculate each square separately.
  8. Subtract terms: Calculating the squares gives us cos2A=396942252564225\cos 2A = \frac{3969}{4225} - \frac{256}{4225}. We subtract the second term from the first term.
  9. Final result: Subtracting the terms gives us cos2A=(3969256)/4225=37134225\cos 2A = (3969 - 256)/4225 = \frac{3713}{4225}.
  10. Final result: Subtracting the terms gives us cos2A=(3969256)/4225=37134225\cos 2A = (3969 - 256)/4225 = \frac{3713}{4225}.The value of cos2A\cos 2A is 37134225\frac{3713}{4225}, which matches one of the given answer choices.

More problems from Operations with rational exponents