Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator. 
cos A=(11)/(61) and A is in Quadrant I.
Find 
cos 2A.

(660)/(3721)

(-6958)/(3721)

(-3479)/(3721)

(1320)/(3721)

Select the answer which is equivalent to the given expression using your calculator. cosA=1161 \cos A=\frac{11}{61} and A is in Quadrant I.\newlineFind cos2A \cos 2 A .\newline6603721 \frac{660}{3721} \newline69583721 \frac{-6958}{3721} \newline34793721 \frac{-3479}{3721} \newline13203721 \frac{1320}{3721}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator. cosA=1161 \cos A=\frac{11}{61} and A is in Quadrant I.\newlineFind cos2A \cos 2 A .\newline6603721 \frac{660}{3721} \newline69583721 \frac{-6958}{3721} \newline34793721 \frac{-3479}{3721} \newline13203721 \frac{1320}{3721}
  1. Apply Double Angle Formula: We will use the double angle formula for cosine, which is cos(2A)=2cos2(A)1\cos(2A) = 2\cos^2(A) - 1 or cos(2A)=12sin2(A)\cos(2A) = 1 - 2\sin^2(A). Since we are given cos(A)\cos(A) and AA is in Quadrant I where all trigonometric functions are positive, we can use the first formula.
  2. Square Cos(A): First, we square the value of cos(A)\cos(A) to find cos2(A)\cos^2(A). cos2(A)=(1161)2=1213721\cos^2(A) = \left(\frac{11}{61}\right)^2 = \frac{121}{3721}.
  3. Calculate 2cos2(A)2\cos^2(A): Next, we multiply this value by 22 to find 2cos2(A)2\cos^2(A). \newline2cos2(A)=2×(1213721)=2423721.2\cos^2(A) = 2 \times \left(\frac{121}{3721}\right) = \frac{242}{3721}.
  4. Use Double Angle Formula: Now, we apply the double angle formula for cosine: cos(2A)=2cos2(A)1\cos(2A) = 2\cos^2(A) - 1. cos(2A)=24237211\cos(2A) = \frac{242}{3721} - 1.
  5. Subtract 11: To subtract 11 from rac{242}{3721}, we need to express 11 as a fraction with the same denominator, which is rac{3721}{3721}. \newline\cos(2A) = rac{242}{3721} - rac{3721}{3721}.
  6. Combine Fractions: Now, we subtract the numerators and keep the common denominator. cos(2A)=24237213721=34793721\cos(2A) = \frac{242 - 3721}{3721} = \frac{-3479}{3721}.
  7. Check Given Options: We check the given options to see if 34793721-\frac{3479}{3721} matches any of them.\newlineThe correct option is (34793721)\left(-\frac{3479}{3721}\right).

More problems from Operations with rational exponents