Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

R(x)=ln((3+x)/(2-x^(2)))

R(x)=ln(3+x2x2) R(x)=\ln \left(\frac{3+x}{2-x^{2}}\right)

Full solution

Q. R(x)=ln(3+x2x2) R(x)=\ln \left(\frac{3+x}{2-x^{2}}\right)
  1. Identify Function: Identify the function that we need to differentiate.\newlineR(x)=ln(3+x2x2)R(x) = \ln\left(\frac{3+x}{2-x^2}\right)\newlineWe need to find R(x)R'(x), the derivative of RR with respect to xx.
  2. Apply Chain Rule: Apply the chain rule for differentiation to the natural logarithm function. The derivative of ln(u)\ln(u) with respect to xx is 1ududx\frac{1}{u} \cdot \frac{du}{dx}, where uu is a function of xx. In this case, u=3+x2x2u = \frac{3+x}{2-x^2}.
  3. Differentiate Numerator and Denominator: Differentiate the numerator and the denominator of uu separately.\newlineThe derivative of the numerator, 3+x3+x, with respect to xx is 11.\newlineThe derivative of the denominator, 2x22-x^2, with respect to xx is 2x-2x.
  4. Apply Quotient Rule: Apply the quotient rule to differentiate u=3+x2x2u = \frac{3+x}{2-x^2}.\newlineThe quotient rule is given by vdudxudvdxv2\frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}, where uu is the numerator and vv is the denominator.
  5. Perform Quotient Rule Calculations: Perform the calculations for the quotient rule.\newlineLet u=3+xu = 3+x and v=2x2v = 2-x^2.\newlinedudx=1\frac{du}{dx} = 1 and dvdx=2x\frac{dv}{dx} = -2x.\newlineNow, apply the quotient rule: vdudxudvdxv2=(2x2)1(3+x)(2x)(2x2)2\frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} = \frac{(2-x^2) \cdot 1 - (3+x) \cdot (-2x)}{(2-x^2)^2}.
  6. Simplify Expression: Simplify the expression obtained from the quotient rule. ((2x2)1(3+x)(2x))/(2x2)2=(2x2+2x(3+x))/(2x2)2((2-x^2) \cdot 1 - (3+x) \cdot (-2x)) / (2-x^2)^2 = (2 - x^2 + 2x(3+x)) / (2-x^2)^2.
  7. Expand and Combine Terms: Expand and combine like terms in the numerator. \newline2x2+2x(3+x)=2x2+6x+2x22 - x^2 + 2x(3+x) = 2 - x^2 + 6x + 2x^2.\newlineCombine like terms: 2+6x+x22 + 6x + x^2.
  8. Write Final Derivative Expression: Write the final expression for the derivative of R(x)R(x).R(x)=2+6x+x2(2x2)2R'(x) = \frac{2 + 6x + x^2}{(2-x^2)^2}.This is the derivative of the function R(x)R(x) with respect to xx.

More problems from Evaluate rational exponents