Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

r=sqrt(x^(2)+y^(2))
The equation gives the quantity 
r in terms of the quantities 
x and 
y. Which of the following equations gives a possible value of 
x in terms of 
r and 
y ?
Choose 1 answer:
(A) 
x=sqrt(r^(2))-y^(2)
(B) 
x=sqrt(r^(2)-y^(2))
(C) 
x=sqrt(r^(2)+y^(2))
(D) 
x=r-y

r=x2+y2 r=\sqrt{x^{2}+y^{2}} \newlineThe equation gives the quantity r r in terms of the quantities x x and y y . Which of the following equations gives a possible value of x x in terms of r r and y y ?\newlineChoose 11 answer:\newline(A) x=r2y2 x=\sqrt{r^{2}}-y^{2} \newline(B) x=r2y2 x=\sqrt{r^{2}-y^{2}} \newline(C) x=r2+y2 x=\sqrt{r^{2}+y^{2}} \newline(D) x=ry x=r-y

Full solution

Q. r=x2+y2 r=\sqrt{x^{2}+y^{2}} \newlineThe equation gives the quantity r r in terms of the quantities x x and y y . Which of the following equations gives a possible value of x x in terms of r r and y y ?\newlineChoose 11 answer:\newline(A) x=r2y2 x=\sqrt{r^{2}}-y^{2} \newline(B) x=r2y2 x=\sqrt{r^{2}-y^{2}} \newline(C) x=r2+y2 x=\sqrt{r^{2}+y^{2}} \newline(D) x=ry x=r-y
  1. Given rr Solve for xx: Given r=x2+y2r = \sqrt{x^2 + y^2}, we need to solve for xx.
  2. Square Both Sides: Square both sides to get rid of the square root: r2=x2+y2r^2 = x^2 + y^2.
  3. Subtract y2y^2: Subtract y2y^2 from both sides to isolate x2x^2: x2=r2y2x^2 = r^2 - y^2.
  4. Take Square Root: Take the square root of both sides to solve for xx: x=r2y2x = \sqrt{r^2 - y^2}.

More problems from Compare linear and exponential growth