Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

r=(-181 k(T_(t)-T_(w)))/(200)
The formula gives the temperature change 
r, in degrees Celsius per minute, of tortellini while it is being cooked, given the initial temperatures of the tortellini, 
T_(t), and the water, 
T_(w), in degrees Celsius, and a heat conductivity of the tortellini of 
k joules per square centimeter per second. Which equation correctly gives the heat conductivity of the tortellini in terms of the temperature change per minute and the initial temperatures of the water and tortellini?
Choose 1 answer:
(A) 
k=(200(r+T_(w)))/(-181T_(t))
(B) 
k=(200 r)/(-181(T_(t)-T_(w)))
(c) 
k=(200 r+T_(w))/(-181T_(+))

r=181k(TtTw)200 r=\frac{-181 k\left(T_{\mathrm{t}}-T_{\mathrm{w}}\right)}{200} \newlineThe formula gives the temperature change r r , in degrees Celsius per minute, of tortellini while it is being cooked, given the initial temperatures of the tortellini, Tt T_{\mathrm{t}} , and the water, Tw T_{\mathrm{w}} , in degrees Celsius, and a heat conductivity of the tortellini of k k joules per square centimeter per second. Which equation correctly gives the heat conductivity of the tortellini in terms of the temperature change per minute and the initial temperatures of the water and tortellini?\newlineChoose 11 answer:\newline(A) k=200(r+Tw)181Tt k=\frac{200\left(r+T_{\mathrm{w}}\right)}{-181 T_{\mathrm{t}}} \newline(B) k=200r181(TtTw) k=\frac{200 r}{-181\left(T_{\mathrm{t}}-T_{\mathrm{w}}\right)} \newline(C) k=200r+TW181T+ k=\frac{200 r+T_{\mathrm{W}}}{-181 T_{+}}

Full solution

Q. r=181k(TtTw)200 r=\frac{-181 k\left(T_{\mathrm{t}}-T_{\mathrm{w}}\right)}{200} \newlineThe formula gives the temperature change r r , in degrees Celsius per minute, of tortellini while it is being cooked, given the initial temperatures of the tortellini, Tt T_{\mathrm{t}} , and the water, Tw T_{\mathrm{w}} , in degrees Celsius, and a heat conductivity of the tortellini of k k joules per square centimeter per second. Which equation correctly gives the heat conductivity of the tortellini in terms of the temperature change per minute and the initial temperatures of the water and tortellini?\newlineChoose 11 answer:\newline(A) k=200(r+Tw)181Tt k=\frac{200\left(r+T_{\mathrm{w}}\right)}{-181 T_{\mathrm{t}}} \newline(B) k=200r181(TtTw) k=\frac{200 r}{-181\left(T_{\mathrm{t}}-T_{\mathrm{w}}\right)} \newline(C) k=200r+TW181T+ k=\frac{200 r+T_{\mathrm{W}}}{-181 T_{+}}
  1. Given formula: We are given the formula:\newliner=181k(TtTw)200r = \frac{-181 \cdot k \cdot (T_{t} - T_{w})}{200}\newlineWe need to solve for kk.\newlineFirst, we multiply both sides of the equation by 200200 to get rid of the denominator.\newline200r=181k(TtTw)200 \cdot r = -181 \cdot k \cdot (T_{t} - T_{w})
  2. Solving for k: Next, we divide both sides of the equation by 181-181 and by (TtTw)(T_{t} - T_{w}) to solve for k.\newlinek=200r181(TtTw)k = \frac{200 \cdot r}{-181 \cdot (T_{t} - T_{w})}
  3. Multiplying both sides: We check the answer choices to see which one matches our derived formula for kk. The correct answer is: (B) k=200r181(TtTw)k = \frac{200 \cdot r}{-181 \cdot (T_{t} - T_{w})}

More problems from Interpret parts of quadratic expressions: word problems