Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

p(x)=(0.6)(3^(x))
The function 
p is defined. What is the value of 
p(2) ?
Choose 1 answer:
(A) 1.8
(B) 3.6
(c) 5.4
(D) 9

p(x)=(0.6)(3x) p(x)=(0.6)\left(3^{x}\right) \newlineThe function p p is defined. What is the value of p(2) p(2) ?\newlineChoose 11 answer:\newline(A) 11.88\newline(B) 33.66\newline(C) 55.44\newline(D) 99

Full solution

Q. p(x)=(0.6)(3x) p(x)=(0.6)\left(3^{x}\right) \newlineThe function p p is defined. What is the value of p(2) p(2) ?\newlineChoose 11 answer:\newline(A) 11.88\newline(B) 33.66\newline(C) 55.44\newline(D) 99
  1. Identify function and value: Identify the function and the value of xx for which we need to find p(x)p(x).\newlineThe function given is p(x)=(0.6)(3x)p(x) = (0.6)(3^x), and we need to find the value of p(2)p(2).
  2. Substitute xx with 22: Substitute xx with 22 in the function p(x)p(x).
    p(2)=(0.6)(32)p(2) = (0.6)(3^2)
  3. Calculate 323^2: Calculate the value of 323^2.\newline32=3×3=93^2 = 3 \times 3 = 9
  4. Multiply by 00.66: Multiply the result from Step 33 by 0.60.6 to find p(2)p(2).\newlinep(2)=(0.6)×9p(2) = (0.6) \times 9
  5. Perform final multiplication: Perform the multiplication to get the final result.\newlinep(22) = 0.6×9=5.40.6 \times 9 = 5.4

More problems from Compare linear and exponential growth