Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

P(4,9)P(4,9) and Q(2,7)Q(2,7) are the endpoints of a line segment. What is the midpoint MM of that line segment?\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)

Full solution

Q. P(4,9)P(4,9) and Q(2,7)Q(2,7) are the endpoints of a line segment. What is the midpoint MM of that line segment?\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)
  1. Identify Midpoint Formula: Identify the midpoint formula for a line segment.\newlineThe midpoint of a line segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:\newlineMidpoint M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2}\right)
  2. Apply Formula to Endpoints: Apply the midpoint formula to the given endpoints P(4,9)P(4,9) and Q(2,7)Q(2,7). Substitute (4,9)(4, 9) for (x1,y1)(x_1, y_1) and (2,7)(2, 7) for (x2,y2)(x_2, y_2) into the midpoint formula. M=(4+22,9+72)M = \left(\frac{4 + 2}{2} , \frac{9 + 7}{2}\right)
  3. Calculate Midpoint Coordinates: Calculate the coordinates of the midpoint MM.M=(4+22,9+72)M = \left(\frac{4 + 2}{2} , \frac{9 + 7}{2}\right)M=(62,162)M = \left(\frac{6}{2}, \frac{16}{2}\right)M=(3,8)M = (3, 8)

More problems from Midpoint formula: find the midpoint