Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

ln(8)ln(4)\ln (8) - \ln (4)

Full solution

Q. ln(8)ln(4)\ln (8) - \ln (4)
  1. Combine logarithms: We will use the property of logarithms that states ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right). This allows us to combine the two logarithms into one.ln(8)ln(4)=ln(84)\ln(8) - \ln(4) = \ln\left(\frac{8}{4}\right)
  2. Simplify fraction: Now we simplify the fraction 84\frac{8}{4}. 88 divided by 44 equals 22. ln(84)=ln(2)\ln(\frac{8}{4}) = \ln(2)
  3. Final answer: Since ln(2)\ln(2) cannot be simplified further without a calculator, we have reached our final answer.\newlineln(2)\ln(2) is the natural logarithm of 22.

More problems from Evaluate rational exponents