Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(n rarr oo)((a-1+root(n)(b))/(a))^(n)

limn(a1+bna)n \lim _{n \rightarrow \infty}\left(\frac{a-1+\sqrt[n]{b}}{a}\right)^{n}

Full solution

Q. limn(a1+bna)n \lim _{n \rightarrow \infty}\left(\frac{a-1+\sqrt[n]{b}}{a}\right)^{n}
  1. Rewrite Limit Expression: First, let's rewrite the limit expression to make it clearer. limn(a1+bna)n\lim_{n \rightarrow \infty}\left(\frac{a-1+\sqrt[n]{b}}{a}\right)^{n}
  2. Rewrite Inside Parentheses: Notice that the expression inside the parentheses can be rewritten as 1+(bn1)/a1 + (\sqrt[n]{b} - 1)/a. So, we have limn(1+(bn1)/a)n\lim_{n \to \infty}(1 + (\sqrt[n]{b} - 1)/a)^{n}
  3. Use Limit Property: Now, let's use the fact that limn(1+xn)n=ex\lim_{n \to \infty}\left(1 + \frac{x}{n}\right)^n = e^x when nn approaches infinity.\newlineHere, x=bn1ax = \frac{\sqrt[n]{b} - 1}{a}.
  4. Determine xx Value: As nn approaches infinity, bn\sqrt[n]{b} approaches 00, so (bn1)/a(\sqrt[n]{b} - 1)/a approaches 1/a-1/a.
  5. Calculate Final Limit: Therefore, the limit becomes e(1/a)e^{(-1/a)}.
  6. Final Answer: So, the final answer is e(1/a)e^{(-1/a)}.

More problems from Evaluate rational exponents