Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=x^(3)-6x^(2)+8.
The absolute minimum value of 
h over the closed interval 
-1 <= x <= 6 occurs at what 
x value?
Choose 1 answer:
(A) 0
(B) 4
(C) 6
(D) -1

Let h(x)=x36x2+8 h(x)=x^{3}-6 x^{2}+8 .\newlineThe absolute minimum value of h h over the closed interval 1x6 -1 \leq x \leq 6 occurs at what x x value?\newlineChoose 11 answer:\newline(A) 00\newline(B) 44\newline(C) 66\newline(D) 1-1

Full solution

Q. Let h(x)=x36x2+8 h(x)=x^{3}-6 x^{2}+8 .\newlineThe absolute minimum value of h h over the closed interval 1x6 -1 \leq x \leq 6 occurs at what x x value?\newlineChoose 11 answer:\newline(A) 00\newline(B) 44\newline(C) 66\newline(D) 1-1
  1. Find Derivative of h(x): To find the absolute minimum value of the function h(x)h(x) over the closed interval [1,6][-1, 6], we need to find the critical points of h(x)h(x) within the interval and evaluate h(x)h(x) at the endpoints of the interval. Critical points occur where the derivative h(x)h'(x) is zero or undefined.\newlineLet's find the derivative of h(x)h(x).\newlineh(x)=ddx[x36x2+8]h'(x) = \frac{d}{dx} [x^3 - 6x^2 + 8]\newline = 3x212x3x^2 - 12x
  2. Find Critical Points: Now we need to find the values of xx where h(x)=0h'(x) = 0. Setting h(x)h'(x) to zero gives us: 3x212x=03x^2 - 12x = 0 x(3x12)=0x(3x - 12) = 0 This gives us two solutions: x=0x = 0 and x=4x = 4.
  3. Evaluate h(x)h(x) at Critical Points and Endpoints: We need to check if these critical points are within the interval [1,6][-1, 6]. Both x=0x = 0 and x=4x = 4 are within the interval, so we will evaluate h(x)h(x) at x=0x = 0, x=4x = 4, and at the endpoints x=1x = -1 and x=6x = 6.
  4. Evaluate h(x)h(x) at x=1x = -1: Let's evaluate h(x)h(x) at x=1x = -1:
    h(1)=(1)36(1)2+8h(-1) = (-1)^3 - 6(-1)^2 + 8
      =16+8\quad\; = -1 - 6 + 8
      =1\quad\; = 1
  5. Evaluate h(x)h(x) at x=0x = 0: Now let's evaluate h(x)h(x) at x=0x = 0:
    h(0)=03602+8h(0) = 0^3 - 6\cdot0^2 + 8
    h(0)=00+8\phantom{h(0)} = 0 - 0 + 8
    h(0)=8\phantom{h(0)} = 8
  6. Evaluate h(x)h(x) at x=4x = 4: Next, let's evaluate h(x)h(x) at x=4x = 4:
    h(4)=436×42+8h(4) = 4^3 - 6\times4^2 + 8
    h(4)=6496+8\phantom{h(4)} = 64 - 96 + 8
    h(4)=24\phantom{h(4)} = -24
  7. Evaluate h(x)h(x) at x=6x = 6: Finally, let's evaluate h(x)h(x) at x=6x = 6:
    h(6)=636×62+8h(6) = 6^3 - 6\times6^2 + 8
    h(6)=216216+8\phantom{h(6)} = 216 - 216 + 8
    h(6)=8\phantom{h(6)} = 8
  8. Compare Values and Determine Absolute Minimum: Comparing the values of h(x)h(x) at x=1x = -1, x=0x = 0, x=4x = 4, and x=6x = 6, we find that the smallest value is h(4)=24h(4) = -24. Therefore, the absolute minimum value of h(x)h(x) over the interval [1,6][-1, 6] occurs at x=4x = 4.

More problems from Euler's method