Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=7-x-2x^(5) and let 
f be the inverse function of 
h. Notice that 
h(-1)=10.

f^(')(10)=

Let h(x)=7x2x5 h(x)=7-x-2 x^{5} and let f f be the inverse function of h h . Notice that h(1)=10 h(-1)=10 .\newlinef(10)= f^{\prime}(10)=

Full solution

Q. Let h(x)=7x2x5 h(x)=7-x-2 x^{5} and let f f be the inverse function of h h . Notice that h(1)=10 h(-1)=10 .\newlinef(10)= f^{\prime}(10)=
  1. Use Inverse Function Derivative Formula: To find f(10)f^{\prime}(10), we need to use the formula for the derivative of the inverse function: f(x)=1h(f(x)).f^{\prime}(x) = \frac{1}{h^{\prime}(f(x))}.
  2. Find Derivative of h(x)h(x): First, we need to find h(x)h^{\prime}(x) which is the derivative of h(x)=7x2x5h(x) = 7 - x - 2x^{5}.\newlineh(x)=110x4h^{\prime}(x) = -1 - 10x^{4}.
  3. Calculate h'(\-1): Since h(\-1) = 10, we need to find h'(\-1) to use in our formula.\newline$h'((-1\)) = (-1\) - \(10\)((-1\))^{\(4\)} = (-1\) - \(10\)(\(1\)) = (-1\) - \(10\) = (-11\).
  4. Find \(f'(10)\): Now we can find \(f'(10)\) using the formula.\(\newline\)\(f'(10) = \frac{1}{h'(f(10))} = \frac{1}{h'(-1)} = \frac{1}{-11}.\)
  5. Final Result: So, \(f^{\prime}(10) = -\frac{1}{11}.\)

More problems from Transformations of quadratic functions