Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=5-x-x^(3) and let 
f be the inverse function of 
h. Notice that 
h(-1)=7.

f^(')(7)=

Let h(x)=5xx3 h(x)=5-x-x^{3} and let f f be the inverse function of h h . Notice that h(1)=7 h(-1)=7 .\newlinef(7)= f^{\prime}(7)=

Full solution

Q. Let h(x)=5xx3 h(x)=5-x-x^{3} and let f f be the inverse function of h h . Notice that h(1)=7 h(-1)=7 .\newlinef(7)= f^{\prime}(7)=
  1. Find h(x)h'(x): Find h(x)h'(x), the derivative of h(x)h(x).\newlineh(x)=13x2h'(x) = -1 - 3x^2
  2. Evaluate h(1)h'(-1): Evaluate h(1)h'(-1) since h(1)=7h(-1)=7 and we need the derivative of the inverse function at h(1)h(-1).h(1)=13(1)2=13(1)=13=4h'(-1) = -1 - 3(-1)^2 = -1 - 3(1) = -1 - 3 = -4
  3. Use inverse function property: Use the property of inverse functions that (f1)(b)=1f(a)(f^{-1})'(b) = \frac{1}{f'(a)} where f(a)=bf(a) = b. Here, f1f^{-1} corresponds to h1h^{-1} and b=7b=7, so we need to find 1h(1)\frac{1}{h'(-1)}. (f1)(7)=1h(1)=14=14(f^{-1})'(7) = \frac{1}{h'(-1)} = \frac{1}{-4} = -\frac{1}{4}

More problems from Transformations of quadratic functions