Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=-(2x)/((x+1)^(2)).
Select the correct description of the one-sided limits of 
h at 
x=-1.
Choose 1 answer:
(A)

{:[lim_(x rarr-1^(+))h(x)=+oo" and "],[lim_(x rarr-1^(-))h(x)=+oo]:}
(B)

{:[lim_(x rarr-1^(+))h(x)=+oo" and "],[lim_(x rarr-1^(-))h(x)=-oo]:}
(c)

{:[lim_(x rarr-1^(+))h(x)=-oo" and "],[lim_(x rarr-1^(-))h(x)=+oo]:}
(D)

{:[lim_(x rarr-1^(+))h(x)=-oo" and "],[lim_(x rarr-1^(-))h(x)=-oo]:}

Let h(x)=2x(x+1)2 h(x)=-\frac{2 x}{(x+1)^{2}} .\newlineSelect the correct description of the one-sided limits of h h at x=1 x=-1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+h(x)=+ and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(B)\newlinelimx1+h(x)=+ and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array} \newline(C)\newlinelimx1+h(x)= and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(D)\newlinelimx1+h(x)= and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array}

Full solution

Q. Let h(x)=2x(x+1)2 h(x)=-\frac{2 x}{(x+1)^{2}} .\newlineSelect the correct description of the one-sided limits of h h at x=1 x=-1 .\newlineChoose 11 answer:\newline(A)\newlinelimx1+h(x)=+ and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(B)\newlinelimx1+h(x)=+ and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=+\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array} \newline(C)\newlinelimx1+h(x)= and limx1h(x)=+ \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=+\infty \end{array} \newline(D)\newlinelimx1+h(x)= and limx1h(x)= \begin{array}{l} \lim _{x \rightarrow-1^{+}} h(x)=-\infty \text { and } \\ \lim _{x \rightarrow-1^{-}} h(x)=-\infty \end{array}
  1. Analyze Function Near 1-1: Analyze the function h(x)h(x) near x=1x = -1. The function is given by h(x)=2x(x+1)2h(x) = -\frac{2x}{(x+1)^{2}}. We need to find the one-sided limits as xx approaches 1-1 from the right (x1+x \to -1^+) and from the left (x1x \to -1^-).
  2. Limit from Right: Find the limit as xx approaches 1-1 from the right (x1+x \to -1^+).\newlineAs xx approaches 1-1 from the right, the numerator 2x-2x approaches 22, while the denominator (x+1)2(x+1)^2 approaches 00. Since the denominator is squared, it will always be positive, and as xx approaches 1-1 from the right, the denominator approaches 00 through positive values. Therefore, the function 1-122 approaches negative infinity.
  3. Limit from Left: Find the limit as xx approaches 1-1 from the left (x1x \to -1^-).\newlineAs xx approaches 1-1 from the left, the numerator 2x-2x again approaches 22, while the denominator (x+1)2(x+1)^2 still approaches 00. Similar to the right-hand limit, the denominator is squared and will always be positive, even as xx approaches 1-1 from the left. Thus, the function 1-111 also approaches negative infinity from the left.
  4. Combine Results: Combine the results from Step 22 and Step 33 to determine the one-sided limits.\newlineFrom Step 22, we have limx1+h(x)=\lim_{x \to -1^+} h(x) = -\infty.\newlineFrom Step 33, we have limx1h(x)=\lim_{x \to -1^-} h(x) = -\infty.\newlineTherefore, both one-sided limits as xx approaches 1-1 are negative infinity.

More problems from Compare linear, exponential, and quadratic growth