Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=(1)/(4)x^(3)+2x-1 and let 
g be the inverse function of 
h. Notice that 
h(2)=5.

g^(')(5)=

Let h(x)=14x3+2x1 h(x)=\frac{1}{4} x^{3}+2 x-1 and let g g be the inverse function of h h . Notice that h(2)=5 h(2)=5 .\newlineg(5)= g^{\prime}(5)=

Full solution

Q. Let h(x)=14x3+2x1 h(x)=\frac{1}{4} x^{3}+2 x-1 and let g g be the inverse function of h h . Notice that h(2)=5 h(2)=5 .\newlineg(5)= g^{\prime}(5)=
  1. Use Inverse Function Formula: To find g(5)g'(5), we need to use the formula for the derivative of the inverse function: g(h(x))=1h(g(x)).g'(h(x)) = \frac{1}{h'(g(x))}.
  2. Find h(x)h'(x): First, we need to find h(x)h'(x), which is the derivative of h(x)h(x) with respect to xx.\newlineh(x)=143x2+2h'(x) = \frac{1}{4} \cdot 3x^2 + 2.
  3. Calculate h(2)h'(2): Now we plug in x=2x = 2 into h(x)h'(x) to find h(2)h'(2).\newlineh(2)=(14)322+2=(14)34+2=3+2=5h'(2) = (\frac{1}{4}) \cdot 3 \cdot 2^2 + 2 = (\frac{1}{4}) \cdot 3 \cdot 4 + 2 = 3 + 2 = 5.
  4. Apply Inverse Function Formula: Now we use the formula for the derivative of the inverse function. g(5)=1h(2)=15g'(5) = \frac{1}{h'(2)} = \frac{1}{5}.

More problems from Transformations of quadratic functions