Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
h
(
x
)
=
1
4
x
3
+
2
x
−
1
h(x)=\frac{1}{4} x^{3}+2 x-1
h
(
x
)
=
4
1
x
3
+
2
x
−
1
and let
g
g
g
be the inverse function of
h
h
h
. Notice that
h
(
2
)
=
5
h(2)=5
h
(
2
)
=
5
.
\newline
g
′
(
5
)
=
g^{\prime}(5)=
g
′
(
5
)
=
View step-by-step help
Home
Math Problems
Algebra 1
Transformations of quadratic functions
Full solution
Q.
Let
h
(
x
)
=
1
4
x
3
+
2
x
−
1
h(x)=\frac{1}{4} x^{3}+2 x-1
h
(
x
)
=
4
1
x
3
+
2
x
−
1
and let
g
g
g
be the inverse function of
h
h
h
. Notice that
h
(
2
)
=
5
h(2)=5
h
(
2
)
=
5
.
\newline
g
′
(
5
)
=
g^{\prime}(5)=
g
′
(
5
)
=
Use Inverse Function Formula:
To find
g
′
(
5
)
g'(5)
g
′
(
5
)
, we need to use the formula for the derivative of the inverse function:
g
′
(
h
(
x
)
)
=
1
h
′
(
g
(
x
)
)
.
g'(h(x)) = \frac{1}{h'(g(x))}.
g
′
(
h
(
x
))
=
h
′
(
g
(
x
))
1
.
Find
h
′
(
x
)
h'(x)
h
′
(
x
)
:
First, we need to find
h
′
(
x
)
h'(x)
h
′
(
x
)
, which is the derivative of
h
(
x
)
h(x)
h
(
x
)
with respect to
x
x
x
.
\newline
h
′
(
x
)
=
1
4
⋅
3
x
2
+
2
h'(x) = \frac{1}{4} \cdot 3x^2 + 2
h
′
(
x
)
=
4
1
⋅
3
x
2
+
2
.
Calculate
h
′
(
2
)
h'(2)
h
′
(
2
)
:
Now we plug in
x
=
2
x = 2
x
=
2
into
h
′
(
x
)
h'(x)
h
′
(
x
)
to find
h
′
(
2
)
h'(2)
h
′
(
2
)
.
\newline
h
′
(
2
)
=
(
1
4
)
⋅
3
⋅
2
2
+
2
=
(
1
4
)
⋅
3
⋅
4
+
2
=
3
+
2
=
5
h'(2) = (\frac{1}{4}) \cdot 3 \cdot 2^2 + 2 = (\frac{1}{4}) \cdot 3 \cdot 4 + 2 = 3 + 2 = 5
h
′
(
2
)
=
(
4
1
)
⋅
3
⋅
2
2
+
2
=
(
4
1
)
⋅
3
⋅
4
+
2
=
3
+
2
=
5
.
Apply Inverse Function Formula:
Now we use the formula for the derivative of the inverse function.
g
′
(
5
)
=
1
h
′
(
2
)
=
1
5
g'(5) = \frac{1}{h'(2)} = \frac{1}{5}
g
′
(
5
)
=
h
′
(
2
)
1
=
5
1
.
More problems from Transformations of quadratic functions
Question
The function
h
h
h
is defined over the real numbers. This table gives a few values of
h
h
h
.
\newline
\begin{tabular}{lllll}
\newline
x
x
x
&
−
6
-6
−
6
.
1
1
1
&
−
6
-6
−
6
.
01
01
01
&
−
6
-6
−
6
.
001
001
001
&
−
5
-5
−
5
.
9
9
9
\\
\newline
\hline
h
(
x
)
h(x)
h
(
x
)
&
−
0
-0
−
0
.
25
25
25
&
−
0
-0
−
0
.
74
74
74
&
−
0
-0
−
0
.
98
98
98
&
−
1
-1
−
1
.
0
0
0
\newline
\end{tabular}
\newline
What is a reasonable estimate for
lim
x
→
−
6
h
(
x
)
\lim _{x \rightarrow-6} h(x)
lim
x
→
−
6
h
(
x
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
6
-6
−
6
\newline
(B)
−
2
-2
−
2
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 10 months ago
Question
What is the amplitude of
\newline
g
(
x
)
=
−
2
sin
(
π
2
x
−
3
)
+
5
?
g(x)=-2 \sin \left(\frac{\pi}{2} x-3\right)+5 ?
g
(
x
)
=
−
2
sin
(
2
π
x
−
3
)
+
5
?
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the amplitude of
y
=
5
sin
(
4
x
−
2
)
−
3
y=5 \sin (4 x-2)-3
y
=
5
sin
(
4
x
−
2
)
−
3
?
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the amplitude of
y
=
−
3
cos
(
π
x
+
2
)
−
6
?
y=-3 \cos (\pi x+2)-6 ?
y
=
−
3
cos
(
π
x
+
2
)
−
6
?
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the amplitude of
y
=
3
sin
(
2
x
−
1
)
+
4
y=3 \sin (2 x-1)+4
y
=
3
sin
(
2
x
−
1
)
+
4
?
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the period of the function
h
(
x
)
=
−
3
cos
(
π
x
+
2
)
−
6
?
h(x)=-3 \cos (\pi x+2)-6 ?
h
(
x
)
=
−
3
cos
(
π
x
+
2
)
−
6
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the period of the function
\newline
h
(
x
)
=
5
sin
(
4
x
−
2
)
−
3
?
h(x)=5 \sin (4 x-2)-3 \text { ? }
h
(
x
)
=
5
sin
(
4
x
−
2
)
−
3
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the period of the function
g
(
x
)
=
2
cos
(
7
x
+
5
)
+
1
?
g(x)=2 \cos (7 x+5)+1 ?
g
(
x
)
=
2
cos
(
7
x
+
5
)
+
1
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the period of the function
f
(
x
)
=
3
sin
(
2
x
−
1
)
+
4
f(x)=3 \sin (2 x-1)+4
f
(
x
)
=
3
sin
(
2
x
−
1
)
+
4
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 10 months ago
Question
What is the period of the function
f
(
x
)
=
−
4
cos
(
5
x
−
9
)
−
7
f(x)=-4 \cos (5 x-9)-7
f
(
x
)
=
−
4
cos
(
5
x
−
9
)
−
7
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant