Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Convert the angle 
theta=290^(@) to radians.
Express your answer exactly.

theta=◻" radians "

Convert the angle θ=290 \theta=290^{\circ} to radians.\newlineExpress your answer exactly.\newlineθ= radians  \theta=\square \text { radians }

Full solution

Q. Convert the angle θ=290 \theta=290^{\circ} to radians.\newlineExpress your answer exactly.\newlineθ= radians  \theta=\square \text { radians }
  1. Understanding degrees and radians: Understand the relationship between degrees and radians.\newlineOne complete revolution (360360^\circ) is equal to 2π2\pi radians. Therefore, to convert degrees to radians, we use the conversion factor π radians180\frac{\pi \text{ radians}}{180^\circ}.
  2. Setting up the conversion: Set up the conversion from degrees to radians for θ\theta.θ\theta in radians = θ\theta in degrees ×\times (π radians180 degrees)\left(\frac{\pi \text{ radians}}{180 \text{ degrees}}\right)
  3. Substituting the given value: Substitute the given value of θ\theta in degrees into the conversion formula.\newlineθ\theta in radians = 290290 degrees ×(π radians180 degrees)\times \left(\frac{\pi \text{ radians}}{180 \text{ degrees}}\right)
  4. Performing the multiplication: Perform the multiplication to find θ \theta in radians.\newlineθ \theta in radians = 290180×π \frac{290}{180} \times \pi \newlineθ \theta in radians = 2918×π \frac{29}{18} \times \pi
  5. Simplifying the fraction: Simplify the fraction if possible.\newlineThe fraction 2918\frac{29}{18} cannot be simplified further, so the exact value of theta in radians is (2918)π\left(\frac{29}{18}\right)\pi.

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity