Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Convert the angle 
theta=(257 pi)/(360) radians to degrees.
Express your answer exactly.

theta=◻^(@)

Convert the angle θ=257π360 \theta=\frac{257 \pi}{360} radians to degrees.\newlineExpress your answer exactly.\newlineθ= \theta=\square^{\circ}

Full solution

Q. Convert the angle θ=257π360 \theta=\frac{257 \pi}{360} radians to degrees.\newlineExpress your answer exactly.\newlineθ= \theta=\square^{\circ}
  1. Understanding radians and degrees: Understand the relationship between radians and degrees.\newlineTo convert an angle from radians to degrees, we use the conversion factor that 180180^\circ is equal to π\pi radians.
  2. Setting up the conversion: Set up the conversion from radians to degrees. θ\theta in degrees = θ\theta in radians ×\times (180 degreesπ radians)\left(\frac{180 \text{ degrees}}{\pi \text{ radians}}\right)
  3. Substituting the given value: Substitute the given value of θ \theta in radians into the conversion formula.θ in degrees=(257π360)×(180π) \theta \text{ in degrees} = \left(\frac{257 \pi}{360}\right) \times \left(\frac{180}{\pi}\right)
  4. Simplifying the expression: Simplify the expression by canceling out the π\pi terms and multiplying the remaining terms.θ in degrees=(257×180360)\theta \text{ in degrees} = \left(\frac{257 \times 180}{360}\right)
  5. Performing the multiplication and division: Perform the multiplication and division to find the value of θ\theta in degrees.\newlineθ\theta in degrees =(257×180)/360= (257 \times 180) / 360\newlineθ\theta in degrees =46260/360= 46260 / 360\newlineθ\theta in degrees =128.5= 128.5

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity